The modulation of acetic acid pathway genes in Arabidopsis improves survival under drought stress

SCIENTIFIC REPORTS(2018)

引用 47|浏览18
暂无评分
摘要
The Arabidopsis histone deacetylase 6 ( HDA6 ) mutant exhibits increased tolerance to drought stress by negatively regulating the expression of ALDH2B7 and PDC1 . Therefore, it was logical to determine if transgenic Arabidopsis plants expressing PDC1 or ALDH2B7 using a suitable promoter would also exhibit tolerance to drought stress. An analysis of published microarray data indicated the up-regulation of the TSPO gene, which encodes an outer membrane t ryptophan-rich s ensory p r o tein (TSPO), by drought stress. RT-qPCR, as well as GUS analysis of the promoter, confirmed the up-regulation of TSPO by drought stress in Arabidopsis roots and shoots. Thus, the TSPO promoter was used to drive drought-responsive expression of ALDH2B7 and PDC1 . RT-qPCR analysis confirmed that the expression of PDC1 and ALDH2B7 was up-regulated, relative to WT plants, by drought stress in homozygous pTSPO-PDC1 and pTSPO-ALDH2B7 plant lines. pTSPO-ALDH2B7 and pTSPO-PDC1 transgenic lines showed prolonged survival under drought stress. Microarray analyses revealed transcriptomic changes related to metabolism in pTSPO-PDC1 plants, indicating that selective regulation of metabolism may occur; resulting in the acquisition of drought stress tolerance. These results confirmed that TSPO promoter can be used to elevate the expression of acetic acid biosynthesis pathway genes; ensuring prolonged survival under drought stress in Arabidopsis .
更多
查看译文
关键词
Drought,Plant molecular biology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要