Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al 2 (Ni,Co,Fe,Cr) 14 compositions

Acta Materialia(2018)

引用 251|浏览6
暂无评分
摘要
Microstructures and mechanical properties of Al-Ni-Co-Fe-Cr high-entropy alloys (HEAs) were investigated by systematically varying transition metals instead of Al, within the chemical formula of Al2M14 (M represents different mutations of transition metals). The formation of different crystal structures (FCC, BCC, or FCC+BCC mixture) and its effects on the resulting mechanical properties of this series of HEAs, both in tension and compression, were evaluated. It was found that, in the BCC-dominated HEAs, ordered B2 precipitates were always coherently dispersed in the BCC solid-solution matrix. The shape of these B2 precipitates was strongly affected by the lattice misfit between the disordered BCC and ordered B2. A uniform distribution of cuboidal B2 particles could be obtained by properly adjusting M, thus the lattice misfit, in a manner similar to that in Ni-based superalloys. Strengthening effects caused by different BCC/B2 morphologies were also estimated and compared with experimental measurements. The optimal strengthening as a function of the shape and size of the coherent precipitates was discussed in light of the lattice misfit in these HEAs.
更多
查看译文
关键词
High entropy alloys,Coherent precipitation,Lattice misfit,Microstructural evolution,Precipitation strengthening
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要