Beam-pointing drift prediction in pulsed lasers by a probabilistic learning approach.

APPLIED OPTICS(2019)

引用 1|浏览8
暂无评分
摘要
In laser systems, it is well known that beam pointing is shifted due to many un-modeled factors, such as vibrations from the hardware platform and air disturbance. In addition, beam-pointing shift also varies with laser sources as well as time, rendering the modeling of shifting errors difficult. While a few works have addressed the problem of predicting shift dynamics, several challenges still remain. Specifically, a generic approach that can be easily applied to different laser systems is highly desired. In contrast to physical modeling approaches, we aim to predict beam-pointing drift using a well-established probabilistic learning approach, i.e., the Gaussian mixture model. By exploiting sampled datapoints (collected from the laser system) comprising time and corresponding shifting errors, the joint distribution of time and shifting error can be estimated. Subsequently, Gaussian mixture regression is employed to predict the shifting error at any query time. The proposed learning scheme is verified in a pulsed laser system (1064 nm, Nd:YAG, 100 Hz), showing that the drift prediction approach achieves remarkable performances. (C) 2019 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要