Cytogenomic analysis of several repetitive DNA elements in turbot (Scophthalmus maximus).

Gene(2018)

引用 0|浏览6
暂无评分
摘要
Repetitive DNA plays a fundamental role in the organization, size and evolution of eukaryotic genomes. The sequencing of the turbot revealed a small and compact genome, as in all flatfish studied to date. The assembly of repetitive regions is still incomplete because it is difficult to correctly identify their position, number and array. The combination of classical cytogenetic techniques along with high quality sequencing is essential to increase the knowledge of the structure and composition of these sequences and, thus, of the structure and function of the whole genome. In this work, the in silico analysis of H1 histone, 5S rDNA, telomeric and Rex repetitive sequences, was compared to their chromosomal mapping by fluorescent in situ hybridization (FISH), providing a more comprehensive picture of these elements in the turbot genome. FISH assays confirmed the location of H1 in LG8; 5S rDNA in LG4 and LG6; telomeric sequences at the end of all chromosomes whereas Rex elements were dispersed along most chromosomes. The discrepancies found between both approaches could be related to the sequencing methodology applied in this species and also to the resolution limitations of the FISH technique. Turbot cytogenomic analyses have proven to add new chromosomal landmarks in the karyotype of this species, representing a powerful tool to investigate targeted genomic sequences or regions in the genetic and physical maps of this species.
更多
查看译文
关键词
TE,BAC,FISH,LG,NTS,LTR,PE,MP,BLAST
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要