Polarizing Cd8+Central Memory T Cells And Th1 Cells By Lenalidomide Contributes To The Antitumor Function Of Cd19 Car-T Cells In Killing Diffused Large B Cell Lymphoma In Vitro

BLOOD(2016)

引用 1|浏览10
暂无评分
摘要
Background CD19-CAR T cells with costimulatory ligand of CD28 or 4-1BB have acquired well response in ALL and CLL, whereas it shows less effective in B-cell NHL. The microenvironment of lymphomas is much more complicated than that of leukemia, which containing physical barriers and higher immunosuppression levels preventing lymphoma cells from T cell attack. To overcome such T cell toleration, one can optimize T cell fitness by adding co-stimulatory domain or polarizing T cell differentiation. Some pre-clinical studies have reported the 3 rd generation of CD19-CAR T cells with CD28 and 4-1BB domain in treating ALL, but the results were in controversy. Lenalidomide has been proved to have direct anti-tumor effects in killing DLBCL cell lines except its immunomodulatory functions. Therefore, we did preliminary investigation in vitro to seek whether the combination of lenalidomide and CD19 CAR-T cells with both CD28 and 4-1BB costimulatory domain could acquire better effects Method We first verified the proliferation inhibition of lenalidomide in treating both ABC-DLBCL cell lines (Su-DHL2 and OCI-Ly3) and GCB-DLBCL cell line OCI-Ly1. CY cell was primary cells isolated from GCB-DLBCL patients in Rui-jin Hospital. Under the maximum observed plasma concentration of lenalidmomide (2.2¦IM), the growth inhibition in both GCB-CY and OCI-Ly1 cell line was minimal, whereas the impact on ABC-DLBCL cell lines was more obvious. We further examined the efficiency of lenalidomide in vivo using a patient-derived mouse model. The primary lymphoma cells were obtained from a ABC-DLBCL patient and subcutaneously transplanted into NOD/SCID mouses. However, daily treated with lenalidomide could not delay the tumor growth (pu003e0.05) (Fig A, B, C). We next isolated CD3+ T cells from healthy donors, expanded with CD3/CD28 beads. The pLenti-EF1¦A-CD19-28-BB-¦AE-mcherry lentiviral vectors was generated and transduced in the expanded T cells to generate CD19 CAR-T cells. T cells transduced with pLenti-EFI¦A-Actin-mcherry lentiviral vector were used as control. CD19-CAR T cells and T cells transdued with Actin-mcherry were pretreated with 2¦IM lenalidomide for 72 hours. LDH assay was then performed to identify the cytotoxicity of CD19-CAR T cells against CY in 7 hours. We found that lenalidomide substantially enhanced the anti-tumor function of CD19 CAR T cells and it also promoted the CD19-CAR T cells proliferation to some extent (Fig D, E). We therefore used three DLBCL patients CAR-T cells to identify the cytokine secretion. It was found that lenalidomide promoted Th1-biased cytokines secretion (IL-2, IFN-¦A, TNF-¦A) and decreased Th2-biased cytokines (IL-6, IL-10). Interestingly, CAR-T cells secreted less IFN-¦A and TNF-¦A but more IL-6 and IL-10 in killing OCI-Ly3 compared with OCI-Ly1 and CY (Fig F). The results leaded us to next determine the CD19-CAR T cell differentiation. A comparable increase of CD8+CD45RA-CD62L+ CD19 CAR T cells was observed as well as the CD4+CCR6-CCR4-CXCR3+ subset, indicating lenalidomide could induce CD19 CAR T cells differentiate to CD8+ central memory T cells and Th1 cells (Fig G). As the central memory T cells are more likely to home to the lymph nodes, we found that lenalidomide considerably increased the CD19-CAR T cell migration toward CCL21 and CCL19 in transwell system (Fig H). Conclusion In conclusion, our results indicate that lenalidomide could polarize CD19-CAR T cells to CD8 T CM and Th1 subset, which might contribute to the enhanced antitumor function of CD19 CAR-T cells. Meanwhile, by overexpressed CD62L, lenalidomide could promote the migrating capability of CD19 CAR-T cells. More in-vivo work shall be done to determine the combination therapy in the future. Disclosures No relevant conflicts of interest to declare.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要