Novel Levenberg-Marquardt based learning algorithm for unmanned aerial vehicles.

Information Sciences(2017)

引用 46|浏览75
暂无评分
摘要
In this paper, Levenberg–Marquardt inspired sliding mode control theory based adaptation laws are proposed to train an intelligent fuzzy neural network controller for a quadrotor aircraft. The proposed controller is used to control and stabilize a quadrotor unmanned aerial vehicle in the presence of periodic wind gust. A proportional-derivative controller is firstly introduced based on which fuzzy neural network is able to learn the quadrotor’s control model on-line. The proposed design allows handling uncertainties and lack of modelling at a computationally inexpensive cost. The parameter update rules of the learning algorithms are derived based on a Levenberg–Marquardt inspired approach, and the proof of the stability of two proposed control laws are verified by using the Lyapunov stability theory. In order to evaluate the performance of the proposed controllers extensive simulations and real-time experiments are conducted. The 3D trajectory tracking problem for a quadrotor is considered in the presence of time-varying wind conditions.
更多
查看译文
关键词
Fuzzy neural networks,Sliding mode control,Levenberg–Marquardt algorithm,Type-1 fuzzy logic control,Unmanned aerial vehicle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要