Selection of extraction medium influences cytotoxicity of zinc and its alloys.

Acta Biomaterialia(2019)

引用 59|浏览26
暂无评分
摘要
Zinc (Zn) alloys have been considered as promising absorbable metals, mainly due to their moderate degradation rates ranging between magnesium alloys and iron alloys. The degradation behavior depends on the specific physiological environment. Released metallic ions and corrosion products directly influence biocompatibility. The initial contact of orthopedic implants or vascular stents after implantation will be with blood. In this study, fetal bovine serum (FBS) was used as a model system of blood components. We investigated the influence of FBS on in vitro degradation behavior and cytotoxicity of pure Zn, and Zn-4Ag and Zn-2Ag-1.8Au-0.2 V (wt%) alloys. The initial degradation rates in FBS were assessed and compared with the degradation and toxicity in four other common physiological model systems: DMEM cell culture medium ± FBS and McCoy's 5A medium ± FBS. Test samples in pure FBS showed the highest initial degradation rates, and accordingly, FBS supplemented media accelerated the degradation process as well. Moreover, an extract test according to ISO 10993-5 and -12 with L929 and Saos-2 cells was performed to investigate the role of FBS in the extraction medium. The cytotoxic effects observed in the tests were correlated with FBS-mediated Zn2+ release. These findings have significant implications regarding the selection of appropriate media for in vitro degradation and cytotoxicity evaluation of Zn and its alloys.
更多
查看译文
关键词
Biomaterials,Absorbable metals,Zinc alloy,Degradation,Cytotoxicity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要