Fundamental corrections to work and power in the strong coupling regime

arXiv: Quantum Physics(2017)

引用 25|浏览4
暂无评分
摘要
We derive general limitations concerning efficiency and power of heat engines strongly coupled to thermal baths. We build this framework on the insight that quantum systems strongly coupled to many-body systems will equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this observation as the starting point of our analysis, we first provide strong-coupling corrections to the second law in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. The corrections identified become relevant for small quantum systems and always vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. To exemplify our results, we discuss the implications on the paradigmatic situation of non-Markovian quantum Brownian motion.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要