Mechanistic dichotomy in bacterial trichloroethene dechlorination revealed by carbon and chlorine isotope effects.

ENVIRONMENTAL SCIENCE & TECHNOLOGY(2019)

引用 34|浏览18
暂无评分
摘要
Tetrachloroethene (PCE) and trichloroethene (TCE) are significant groundwater contaminants. Microbial reductive dehalogenation at contaminated sites can produce nontoxic ethene but often stops at toxic cis-1,2-dichloroethene (cis-DCE) or vinyl chloride (VC). The magnitude of carbon relative to chlorine isotope effects (as expressed by Lambda(C/Cl), the slope of delta C-13 versus delta Cl-37 regressions) was recently recognized to reveal different reduction mechanisms with vitamin B-12 as a model reactant for reductive dehalogenase activity. Large Lambda(C/Cl) values for cis-DCE reflected cob(I)alamin addition followed by protonation, whereas smaller Lambda(C/Cl) values for PCE evidenced cob(I)alamin addition followed by Cl- elimination. This study addressed dehalogenation in actual microorganisms and observed identical large Lambda(C/Cl) values for cis-DCE (Lambda(C/Cl) = 10.0 to 17.8) that contrasted with identical smaller Lambda(C/Cl) for TCE and PCE (Lambda(C/Cl) = 2.3 to 3.8). For TCE, the trend of small Lambda(C/Cl) could even be reversed when mixed cultures were precultivated on VC or DCEs and subsequently confronted with TCE (Lambda(C/Cl) = 9.0 to 18.2). This observation provides explicit evidence that substrate adaptation must have selected for reductive dehalogenases with different mechanistic motifs. The patterns of Lambda(C/Cl) are consistent with practically all studies published to date, while the difference in reaction mechanisms offers a potential answer to the long-standing question of why bioremediation frequently stalls at cis-DCE.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要