Noncanonical function of DGCR8 controls mESC exit from pluripotency

JOURNAL OF CELL BIOLOGY(2017)

引用 30|浏览17
暂无评分
摘要
Mouse embryonic stem cells (mESCs) deficient for DGCR8, a key component of the microprocessor complex, present strong differentiation defects. However, the exact reasons impairing their commitment remain elusive. The analysis of newly generated mutant mESCs revealed that DGCR8 is essential for the exit from the pluripotency state. To dissociate canonical versus noncanonical functions of DGCR8, we complemented the mutant mESCs with a phosphomutant DGCR8, which restored microRNA levels but did not rescue the exit from pluripotency defect. Integration of omics data and RNA immunoprecipitation experiments established DGCR8 as a direct interactor of Tcf7l1 mRNA, a core component of the pluripotency network. Finally, we found that DGCR8 facilitated the splicing of Tcf7l1, an event necessary for the differentiation of mESCs. Our data reveal a new noncanonical function of DGCR8 in the modulation of the alternative splicing of Tcf7l1 mRNA in addition to its established function in microRNA biogenesis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要