Reversible Tuning Of Two-Dimensional Electron Gases In Oxide Heterostructures By Chemical Surface Modification

APPLIED PHYSICS LETTERS(2016)

引用 6|浏览9
暂无评分
摘要
Reversible control over the electrical properties of the two-dimensional electron gas (2DEG) in oxide heterostructures is a key capability enabling practical applications. Herein, we report an efficient method to reversibly tune the charge carrier density of the 2DEG by surface modification. We demonstrate both increasing and decreasing the carrier density of the LaAlO3/SrTiO3 2DEG interface via application of functional phosphonic acids with molecular dipoles pointing either toward or away from the interface, respectively. In addition, in the case of the enhanced 2DEG, we recovered the initial conduction properties by exposing the samples to a basic solution. The tuning processes were highly reversible over repetitive cycles. These results reveal that the surface modification is an efficient way to tune the carrier density of 2DEG in oxide heterostructures. This simple chemical approach offers a vast range of fabrication possibilities in versatile electronic device applications. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要