Mechanism of paclitaxel resistance in a human prostate cancer cell line, PC3-PR, and its sensitization by cabazitaxel.

Biochemical and Biophysical Research Communications(2016)

引用 31|浏览10
暂无评分
摘要
Paclitaxel (PTX) is a microtubule-targeting drug widely used for the treatment of a variety of cancers. However, drug resistance can emerge after a series of treatments, and this can seriously affect the patient's prognosis. Here, we analyzed the mechanism of PTX resistance using a human prostate cancer cell line, PC3, and its PTX-resistant subline, PC3-PR. Compared with PC3, PC3-PR exhibited some unique phenotypes that might be associated with PTX resistance, including decreased expression of acetylated α-tubulin and the cell cycle regulator p21, and increased expression of βIII tubulin, histone deacetylase 6 (HDAC6), and the anti-apoptotic protein Bcl2. The drug exporters MDR1 and MRP1 were not involved in PTX resistance. Although cabazitaxel (CTX), a novel taxoid, has been reported to overcome PTX resistance, its mechanism of action is unknown. We found that treatment of PC3-PR cells with CTX induced expression of acetylated α-tubulin and p21, but not the related regulators p27, p15, and p16 or the Bcl2 family proteins. The pan-HDAC inhibitors trichostatin A and suberanilohydroxamic acid and the HDAC6-specific inhibitor tubacin inhibited PC3-PR proliferation and increased expression of p21 and acetylated α-tubulin in a manner similar to CTX. Our data shed light on the cellular response to PTX and CTX.
更多
查看译文
关键词
Paclitaxel resistance,Human prostate cancer cell line,Cabazitaxel,Cell growth inhibition,p21,Acetylated α-tubulin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要