5.1 A Stacked Global-Shutter CMOS Imager with SC-Type Hybrid-GS Pixel and Self-Knee Point Calibration Single Frame HDR and On-Chip Binarization Algorithm for Smart Vision Applications

2019 IEEE International Solid- State Circuits Conference - (ISSCC)(2019)

引用 19|浏览15
暂无评分
摘要
Request for smart vision related applications, such as face identification, VR/AR, gesture recognition, 3D imaging, and artificial intelligence (AI), has driven demand for high-performance global-shutter (GS) sensors. Most commercially available GS sensors use a charge-domain storage gate implementation, which suffers from serious light leakage and leads to lower shutter efficiency. This situation worsens when using a BSI fabrication process [1]. In addition, the traditional frame-based or line-based HDR method utilizing multiple exposures adds motion artifact to fast-moving objects, which defeats the purpose of having a global shutter. Moreover, some smart vision applications such as QR 2D barcode scanners and 3D facial recognition with structured light method need image sensors to “read” a certain pattern and “understand” the information within. However, image sensors usually capture a full image that needs to be further transferred to and processed by a companion SoC. Higher resolution and increased complexity of the target pattern pose a growing challenge to transfer and process the entire image at real time, also the required high power consumption lowers handheld device’s battery life.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要