Facile Synthesis of SnO₂ Aerogel/Reduced Graphene Oxide Nanocomposites via in Situ Annealing for the Photocatalytic Degradation of Methyl Orange.

NANOMATERIALS(2019)

引用 50|浏览7
暂无评分
摘要
SnO2 aerogel/reduced graphene oxide (rGO) nanocomposites were synthesized using the sol-gel method. A homogeneous dispersion of graphene oxide (GO) flakes in a tin precursor solution was captured in a three-dimensional network SnO2 aerogel matrix and successively underwent supercritical alcohol drying followed by the in situ thermal reduction of GO, resulting in SnO2 aerogel/rGO nanocomposites. The chemical interaction between aerogel matrix and GO functional groups was confirmed by a peak shift in the Fourier transform infrared spectra and a change in the optical bandgap of the diffuse reflectance spectra. The role of rGO in 3D aerogel structure was studied in terms of photocatalytic activity with detailed mechanism of the enhancement such as electron transfer between the GO and SnO2. In addition, the photocatalytic activity of these nanocomposites in the methyl orange degradation varied depending on the amount of rGO loading in the SnO2 aerogel matrix; an appropriate amount of rGO was required for the highest enhancement in the photocatalytic activity of the SnO2 aerogel. The proposed nanocomposites could be a useful solution against water pollutants.
更多
查看译文
关键词
SnO2 aerogel,sol-gel method,graphene oxide,nanocomposite,photocatalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要