Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering.

Journal of Colloid and Interface Science(2019)

引用 50|浏览4
暂无评分
摘要
Protein-based hydrogels that possess tunable properties have long been a challenge in tissue engineering. Keratin is a group of natural proteins derived from skin and skin appendant, and features a rich content of cysteine residue which exists in the form of disulfide bonds. Inspired by this, in this work, a simple disulfide shuffling strategy was utilized to develop keratin hydrogels by converting the intramolecular disulfide bonds into the intermolecular disulfide bonds. To achieve this, the intramolecular disulfide bonds were first cleaved by the reductive reagent such as cysteine, to liberate free thiol group, which formed intermolecular disulfide bonds through thiol oxidation. It was demonstrated that control of the cysteine level led to a tunable disulfide crosslinking density, and thus an altered network structure, gel degradation, and drug release rate. Also, this strategy enables good biocompatibility of the material owing to avoiding extra chemical crosslinkers in the preparation procedure. Moreover, this keratin hydrogel had redox-responsive capacity in both gel degradation and drug release due to the disulfide-bond based network structure, providing extensive applicability in tissue engineering and drug release.
更多
查看译文
关键词
Keratin,Disulfide shuffling,Tunable hydrogels,Tissue engineering,Drug delivery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要