Effect Of Reference Spectra In Spectral Fitting To Discriminate Enzyme-Activatable Photoacoustic Probe From Intrinsic Optical Absorbers

PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2016(2016)

引用 3|浏览12
暂无评分
摘要
Multispectral photoacoustic (MS-PA) imaging has been researched to image molecular probes in the presence of strong background signals produced from intrinsic optical absorbers. Spectral fitting method (SFM) discriminates probe signals from background signals by fitting the PA spectra that are calculated from MS-PA images to reference spectra of the probe and background, respectively. Because hemoglobin is a dominant optical absorber in visible to near-infrared wavelength range, absorption spectra of hemoglobin have been widely used as reference background spectra. However, the spectra of background signals produced from heterogeneous biological tissue differ from the reference background spectra due to presence of other intrinsic optical absorbers and effect of optical scattering. Due to the difference, the background signals partly remain in the probe images. To image the probe injected in subcutaneous tumors of mice clearly, we added the melanosome absorption spectrum to the reference background spectra because skin contains non negligible concentration of melanosome and the spectrum is very similar to the scattering spectrum of biological tissue. The probe injected in the subcutaneous tumor of mice was an enzyme-activatable probe which show their original colors only in the presence of gamma-glutamyltranspeptidase, an enzyme associated with cancer. The probes have been successfully used for rapid fluorescence imaging of cancer. As a result of MS-PA imaging, by considering the melanosome absorption spectrum, the background signals were successfully suppressed and then clearer probe image was obtained. Our MS-PA imaging method afforded successful imaging of tumors in mice injected with activatable PA probes.
更多
查看译文
关键词
Spectral unmixing,Molecular imaging,Multispectral,Activatable probe,Photoacoustic imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要