Enhanced Sensitivity Of Graphene Ammonia Gas Sensors Using Molecular Doping

APPLIED PHYSICS LETTERS(2016)

引用 79|浏览11
暂无评分
摘要
We report on employing molecular doping to enhance the sensitivity of graphene sensors synthesized via chemical vapor deposition to NH3 molecules at room temperature. We experimentally show that doping an as-fabricated graphene sensor with NO2 gas improves sensitivity of its electrical resistance to adsorption of NH3 molecules by about an order of magnitude. The detection limit of our NO2-doped graphene sensor is found to be similar to 200 parts per billion (ppb), compared to similar to 1400 ppb before doping. Electrical characterization and Raman spectroscopy measurements on graphene field-effect transistors show that adsorption of NO2 molecules significantly increases hole concentration in graphene, which results in the observed sensitivity enhancement. (C) 2016 AIP Publishing LLC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要