Paraoxonase 2 protects against acute myocardial ischemia-reperfusion injury by modulating mitochondrial function and oxidative stress via the PI3K/Akt/GSK-3β RISK pathway

Journal of Molecular and Cellular Cardiology(2019)

引用 49|浏览25
暂无评分
摘要
Objective To investigate the novel role of Paraoxonase 2 (PON2) in modulating acute myocardial ischemia-reperfusion injury (IRI). Approach IRI was induced both in vivo and ex vivo in male, C57BL6/J (WT) and PON2-deficient (PON-def) mice. In addition, in vitro hypoxia-reoxygenation injury (HRI) was induced in H9c2 cells expressing empty vector (H9c2-EV) or human PON2 (H9c2-hPON2) ± LY294002 (a potent PI3K inhibitor). Infarct size, PON2 gene expression, mitochondrial calcium retention capacity (CRC), reactive oxygen species (ROS) generation, mitochondrial membrane potential, CHOP and pGSK-3β protein levels, and cell apoptosis were evaluated. Results PON2 gene expression is upregulated in WT mice following in vivo IRI. PON2-def mice exhibit a 2-fold larger infarct, increased CHOP levels, and reduced pGSK-3β levels compared to WT controls. Global cardiac mitochondria isolated from PON2-def mice exhibit reduced CRC and increased ROS production. Cardiomyocytes isolated from PON2-def mice subjected to ex vivo IRI have mitochondria with reduced CRC (also seen under non-IRI conditions), and increased ROS generation and apoptosis compared to WT controls. PON2 knockdown in H9c2 cells subjected to HRI leads to an increase in mitochondrial membrane depolarization. H9c2-hPON2 cells exhibit i) improvement in mitochondrial membrane potential, pGSK-3β levels and mitochondrial CRC, and ii) decrease in CHOP levels, mitochondrial ROS generation and cell apoptosis, when compared to H9c2-EV controls. Treatment with LY294002 resulted in a decrease of mitochondrial CRC and increase in mitochondrial ROS production and cell apoptosis in the H9c2-hPON2 group versus H9c2-EV controls. Conclusion PON2 protects against acute myocardial IRI by reducing mitochondrial dysfunction and oxidative stress in cardiomyocytes via activation of the PI3K/Akt/GSK-3β RISK pathway.
更多
查看译文
关键词
Myocardial infarction,Ischemia-reperfusion injury,Paraoxonase 2,Cardiomyocytes,Mitochondria,Permeability transition pore,Calcium,Reactive oxygen species,RISK pathway (PI3K/Akt/GSK-3β)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要