Adsorption of Cesium from Aqueous Solution of Highly Concentrated Nitric Acid Using Supermolecule/Ordered Mesoporous Carbon Composite

Water Air and Soil Pollution(2018)

引用 9|浏览1
暂无评分
摘要
Calix[4]arene-crown-6 compounds are promising ligands in the removal of cesium. With this aim, a macrocyclic compound, calix[4]arene-crown-6, was chemically immobilized onto inorganic ordered mesoporous carbon material. Several adsorption parameters such as nitric acid concentration, contact time, initial cesium content, operation temperature, and competing ions were studied. The results demonstrated the prepared material conserved high cesium selectivity of calix[4]arene-crown-6 and physicochemistry stability of the ordered mesoporous carbon matrix and showed the superior cesium adsorption performance. The optimum adsorption acidity determined as 3.0 M nitric acid was consistent with the actual acidity value in the back-end of the nuclear fuel cycle. The Langmuir model indicated the monolayer coverage adsorption and the highest mass adsorption capacity was calculated as 128.06 mg cesium/g. The pseudo-second-order model and D-R model proved the adsorption was a chemical process. Thermodynamics parameters showed the adsorption was spontaneous and exothermal in nature. Competing ions hardly affected cesium adsorption. Furthermore, the adsorbent showed almost intact adsorption capacity after five adsorption-elution cycles. The comprehensive performance highlights the composite material as a promising adsorbent for cesium adsorption from wastewaters. Graphical Abstract
更多
查看译文
关键词
Ordered mesoporous carbon, Cesium, Isotherms, Kinetics, Thermodynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要