Intramolecular Spin State Locking in Iron(II) 2,6-Di(pyrazol-3-yl)pyridine Complexes by Phenyl Groups: An Experimental Study

MAGNETOCHEMISTRY(2018)

引用 16|浏览5
暂无评分
摘要
Here we report a series of 1-phenyl-5-substituted 2,6-di(pyrazol-3-yl)pyridine complexes with iron(II) ion found in a high spin state in solids (according to magnetochemistry) and in solution (according to NMR spectroscopy), providing experimental evidence for it being an intramolecular effect induced by the phenyl groups. According to X-ray diffraction, the high spin locking of the metal ion is a result of its highly distorted coordination environment (with a very low 'twist' angle atypical of 2,6-di(pyrazol-3-yl) pyridine complexes), which remains this way in complexes with different substituents and counterions, in a diamagnetic zinc(II) analogue and in their solutions. Three possible reasons behind it, including additional coordination with the phenyl group, energy penalty incurred by its rotation or intramolecular stacking interactions, are addressed experimentally.
更多
查看译文
关键词
high-spin complexes,iron(II) complexes,molecular design,spin-crossover,spin state trapping,paramagnetic NMR spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要