New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide-Based Small-Molecules with Nonconjugated Backbones

ADVANCED ENERGY MATERIALS(2018)

引用 88|浏览23
暂无评分
摘要
State-of-the-art perovskite-based solar cells employ expensive, organic hole transporting materials (HTMs) such as Spiro-OMeTAD that, in turn, limits the commercialization of this promising technology. Herein an HTM (EDOT-Amide-TPA) is reported in which a functional amide-based backbone is introduced, which allows this material to be synthesized in a simple condensation reaction with an estimated cost of <$5 g(-1). When employed in perovskite solar cells, EDOT-Amide-TPA demonstrates stabilized power conversion efficiencies up to 20.0% and reproducibly outperforms Spiro-OMeTAD in direct comparisons. Time resolved microwave conductivity measurements indicate that the observed improvement originates from a faster hole injection rate from the perovskite to EDOT-Amide-TPA. Additionally, the devices exhibit an improved lifetime, which is assigned to the coordination of the amide bond to the Li-additive, offering a novel strategy to hamper the migration of additives. It is shown that, despite the lack of a conjugated backbone, the amide-based HTM can outperform state-of-the-art HTMs at a fraction of the cost, thereby providing a novel set of design strategies to develop new, low-cost HTMs.
更多
查看译文
关键词
amides,hole transporting materials,low-cost,perovskites,solar cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要