Actomyosin-mediated nanostructural remodeling of the presynaptic vesicle pool by cannabinoids induces long-term depression

bioRxiv(2018)

引用 2|浏览10
暂无评分
摘要
Endo- and exocannabinoids, such as the psychoactive component of marijuana, exert their effects on brain function by inducing several forms of synaptic plasticity through the modulation of presynaptic vesicle release. However, the molecular mechanisms underlying the widely expressed endocannabinoid-mediated long-term depression (eCB-LTD), are poorly understood. Here, we reveal that eCB-LTD depends on the contractile properties of the pre-synaptic actomyosin cytoskeleton. Preventing this contractility, both directly by inhibiting non-muscle myosin II NMII ATPase and indirectly by inhibiting the upstream Rho-associated kinase ROCK, abolished long-term, but not short-term forms of cannabinoid-induced functional plasticity in both inhibitory hippocampal and excitatory cortico-striatal synapses. Furthermore, using 3D superresolution microscopy, we find an actomyosin contractility-dependent redistribution of synaptic vesicle pools within the presynaptic compartment following cannabinoid receptor activation, leading to vesicle clustering and depletion from the pre-synaptic active zone. These results suggest that cannabinoid-induced functional plasticity is mediated by a nanoscale structural reorganization of the presynaptic compartment produced by actomyosin contraction. By introducing the contractile NMII as an important actin binding/structuring protein in the dynamic regulation of synaptic function, our results open new perspectives in the understanding of mechanisms of synaptic and cognitive function, marijuana intoxication and psychiatric pathogenesis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要