Electrical resistivity, magnetism and electronic structure of the intermetallic 3d/4f Laves phase compounds ErNi2Mnx

AIP ADVANCES(2018)

引用 5|浏览26
暂无评分
摘要
The non-stoichiometric intermetallic compounds RENi2Mnx (RE = rare earth) with the cubic MgCu2-type structure display a large variety of magnetic properties which is due to a complex interplay between the degrees of freedom of the 3d and 4f electrons and their interactions. We performed a comprehensive study of the electrical resistivity, magnetic properties and the electronic structure of ErNi2Mnx (x = 0, 0.25, 0.5, 0.75, 1, 1.25) compounds by employing a suitable set of complementary experimental approaches. We find an increase in electrical resistance compared to ErNi2 upon Mn doping, the residual resistivity ratio decreases with increasing manganese content. The Curie temperature exhibits a sharp increase to around 50 K for Mn concentrations x >= 0.5, whereas the saturation magnetization decreases with growing Mn content x >= 0.5. Valence band X-ray photoelectron spectroscopy reveals an increasing intensity of Mn 3d states near Fermi energy in dependence of Mn concentration and Curie temperature. Resonant photoelectron spectroscopy of ErNi2Mn0.75 reveals that the photoemission decay channels dominate the valence band spectra across the Er N-5 and Mn L-3 X-ray absorption maxima, whereas the L3VV Auger dictates the resonant valence band spectra close to and at the Ni L-3 X-ray absorption edge. (c) 2018 Author(s).
更多
查看译文
关键词
electronic structure,electrical resistivity,compounds,laves phase,magnetism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要