Preparation of Ga-terminated negative electron affinity-GaAs (100) surface by HCl-isopropanol treatment for nanoanalysis by scanning tunneling microscopy

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B(2018)

引用 1|浏览4
暂无评分
摘要
Negative electron affinity (NEA) surfaces can emit electrons by low-energy light illumination that is nearly equal to the bandgap energy of a semiconductor because NEA surfaces lower the vacuum level to below the conduction-band minimum. In particular, NEA-GaAs surfaces show distinct characteristics such as high spin polarization, low emittance, short pulsed operation, and high intensity. NEA surfaces are formed by alternating application of Cs and O-2 on a clean GaAs surface. Scanning tunneling microscopy (STM) was used to investigate the surface states of NEA-GaAs (100) surfaces prepared using HCl-isopropanol treatment followed by annealing in an ultrahigh vacuum. The results indicated remarkable improvement in the surface quality of the GaAs (100). The authors have been studying the relationship between electron emission properties and the adsorption structures of Cs on Ga-terminated GaAs surfaces. Here, they report the first observation of NEA-Ga-terminated surfaces with Cs adsorption using STM. Published by the AVS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要