Charge susceptibility and conductances of a double quantum dot

AIP ADVANCES(2018)

引用 3|浏览11
暂无评分
摘要
We calculate the charge susceptibility and the linear and differential conductances of a double quantum dot coupled to two metallic reservoirs both at equilibrium and when the system is driven away from equilibrium. This work is motivated by recent progress in the realization of solid state spin qubits. The calculations are performed by using the Keldysh nonequilibrium Green function technique. In the noninteracting case, we give the analytical expression for the electrical current and deduce from there the linear conductance as a function of the gate voltages applied to the dots, leading to a characteristic charge stability diagram. We determine the charge susceptibility which also exhibits peaks as a function of gate voltages. We show how the study can be extended to the case of an interacting quantum dot. (c) 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要