Intuitive planning: global navigation through cognitive maps based on grid-like codes

bioRxiv(2018)

引用 11|浏览24
暂无评分
摘要
It is proposed that a cognitive map encoding the relationships between objects supports the ability to flexibly navigate the world. Place cells and grid cells provide evidence for such a map in a spatial context. Emerging evidence suggests analogous cells code for non-spatial information. Further, it has been shown that grid cells resemble the eigenvectors of the relationship between place cells and can be learnt from local inputs. Here we show that these locally-learnt eigenvectors contain not only local information but also global knowledge that can provide both distributions over future states as well as a global distance measure encoding approximate distances between every object in the world. By simply changing the weights in the grid cell population, it is possible to switch between computing these different measures. We demonstrate a simple algorithm can use these measures to globally navigate arbitrary topologies without searching more than one step ahead. We refer to this as intuitive planning.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要