Contactless Exploration Of Graphene Properties Using Millimeter Wave Response Of Wgm Resonator

APPLIED PHYSICS LETTERS(2018)

引用 7|浏览8
暂无评分
摘要
The response of a sapphire whispering gallery mode (WGM) resonator to a single-layer graphene film was studied in the millimeter wave band (frequency of about 40 GHz) at different distances of graphene from the resonator. In the resonator, the HE141 delta WGM was excited, in which the longitudinal component of the electric field is predominant. Based on the fitting results of both the response measurement and the numerical simulation of the resonator, the conductivity value was obtained for a known film thickness. The conductivity of our CVD-grown and transferred graphene was found to be (1.02 +/- 0.06) x 10(6) S/m. This deviates slightly from the values obtained through our DC conductivity measurements, reflecting the real parameters of the graphene material after transfer from copper to a quartz substrate. A significant difference was demonstrated between the conductivity values obtained by the fitting procedure and those calculated using the perturbation method. In explanation for the discrepancy, we propose a possible inapplicability of the perturbation method for the cases of both the resonator and mode polarization used in this work. The results of this work show that a WGM resonator technique allows contactless exploration of graphene parameters, such as conductivity or sheet resistance, in the millimeter wave band. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要