High-Pressure Microfluidization as a Green Tool for Optimizing the Mechanical Performance of All-Cellulose Composites

ACS Sustainable Chemistry & Engineering(2018)

引用 17|浏览7
暂无评分
摘要
We herein report the production of environmentally inspired all-cellulose composites in response to the ever-growing concern on the extensive usage of nonbiodegradable materials derived from nonrenewable resources. Hydroxypropyl methylcellulose (HPMC) was used as a film-forming matrix, while microcrystalline cellulose (MCC) was added as a reinforcement filler. Because the efficiency of fillers in transferring mechanical strength to polymer matrixes relies upon the dispersion level of the former within the latter, this contribution set out to improve the homogeneity of the composite films through a green, solvent-free approach. Indeed, as-received MCC actually decreased the tensile strength, Young’s modulus, and elongation at break of HPMC films in ca. 80%, 33%, and 90%, respectively. High-pressure microfluidization was demonstrated to break MCC particles down, not to play a role on cellulose crystallinity, and to expose surface groups and/or create mechanoradicals, as suggested by a combination of spectro...
更多
查看译文
关键词
High-pressure homogenizer,Mechanochemistry,Nanocellulose,Hydroxypropyl methylcellulose,Cellulose ether,Biodegradable packaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要