An efficient genome editing strategy to generate putative null mutants in Caenorhabditis elegans using CRISPR/Cas9

bioRxiv(2018)

引用 35|浏览6
暂无评分
摘要
Null mutants are essential for analyzing gene function. Here, we describe a simple and efficient method to generate Caenorhabditis elegans null mutants using CRISPR/Cas9 and short single stranded DNA oligo repair templates to insert a universal 43-nucleotide-long stop knock-in (STOP-IN) cassette into the early exons of target genes. This cassette has stop codons in all three reading frames and leads to frameshifts, which will generate putative null mutations regardless of the reading frame of the insertion position in exons. The STOP-IN cassette also contains an exogenous Cas9 target site that allows further genome editing and provides a unique sequence that simplifies the identification of successful insertion events via PCR. As a proof of concept, we inserted the STOP-IN cassette right at a Cas9 target site in aex-2 to generate new putative null alleles by injecting preassembled Cas9 ribonucleoprotein and a short synthetic single stranded DNA repair template containing the STOP-IN cassette and two 35-nucleotide-long homology arms identical to the sequences flanking the Cas9 cut site. We showed that these new aex-2 alleles phenocopied an existing loss-of-function allele of aex-2 . We further showed that the new aex-2 null alleles could be reverted back to the wild-type sequence by targeting exogenous Cas9 cut site included in the STOP-IN cassette and providing a single stranded wild-type DNA repair oligo. We applied our STOP-IN method to generate new putative null mutants for additional 20 genes, including three pharyngeal muscle-specific genes ( clik-1, clik-2 , and clik-3 ), and reported a high insertion rate (46%) based on the animals we screened. We showed that null mutations of clik-2 cause recessive lethality with a severe pumping defect and clik-3 null mutants have a mild pumping defect, while clik-1 is dispensable for pumping. We expect that the knock-in method using the STOP-IN cassette will facilitate the generation of new null mutants to understand gene function in C. elegans and other genetic model organisms. Summary We report a simple and efficient CRISPR/Cas9 genome editing strategy to generate putative null C. elegans mutants by inserting a small universal stop knock-in (STOP-IN) cassette with stop codons in three frames and frameshifts. The strategy is cloning-free, with the mixture consisting of preassembled Cas9 ribonucleoprotein and single stranded repair DNA oligos directly injected into gonads of adult C. elegans . The universal STOP-IN cassette also contains a unique sequence that simplifies detection of successful knock-in events via PCR and an exogenous Cas9 target sequence that allows further genome editing.
更多
查看译文
关键词
CRISPR/Cas9,<italic>C. elegans</italic>,null allele,STOP-IN,genome editing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要