A New Error Prediction Method for Machining Process Based on a Combined Model

MATHEMATICAL PROBLEMS IN ENGINEERING(2018)

引用 3|浏览4
暂无评分
摘要
Machining process is characterized by randomness, nonlinearity, and uncertainty, leading to the dynamic changes of machine tool machining errors. In this paper, a novel model combining the data processing merits of metabolic grey model (MGM) with that of nonlinear autoregressive (NAR) neural network is proposed for machining error prediction. 'I he advantages and disadvantages of MGM and NAR neural network are introduced in detail, respectively. The combined model first utilizes MGM to predict the original error data and then uses NAR neural network to forecast the residual series of MGM. An experiment on the spindle machining is carried out, and a series of experimental data is used to validate the prediction performance of the combined model. The comparison of the experiment results indicates that combined model performs better than the individual model. The two-stage prediction of the combined model is characterized by high accuracy, fast speed, and robustness and can be applied to other complex machining error predictions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要