Non-Singular Three-Dimensional Arbitrarily Shaped Acoustic Cloaks Composed Of Homogeneous Parts

JOURNAL OF APPLIED PHYSICS(2018)

引用 9|浏览4
暂无评分
摘要
Acoustic metamaterials are artificial materials with unique acoustic properties, permitting interesting behaviors, such as acoustic cloaking. Acoustic cloaks can make an object appear acoustically "invisible." Prior cloaks that were designed based on transformation methods have been limited by inhomogeneous, anisotropic, and extreme material parameters. In this paper, a multistep transformation is proposed for a general tetrahedron. Each tetrahedron contains three homogeneous parts. Since most cloaks can be approximated as polyhedra, they can be divided into a series of tetrahedra. As a result, most of the 3D cloaks can be constructed of homogeneous parts by first approximating them as polyhedra. Two examples of the polyhedral cloaks are given, which are simulated using COMSOL Multiphysics finite element software. The results show that the cloaks work well at acoustically concealing 3D objects. Although the properties of each part are non-singular, a balance is still required between cloaking performance and moderation of the material property values. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要