Rapid Thermal Anneal Activates Light Induced Degradation Due To Copper Redistribution

APPLIED PHYSICS LETTERS(2018)

引用 4|浏览12
暂无评分
摘要
While it is well known that copper impurities can be relatively easily gettered from the silicon bulk to the phosphorus or boron-doped surface layers, it has remained unclear how thermally stable the gettering actually is. In this work, we show experimentally that a typical rapid thermal anneal (RTA, a few seconds at 800 degrees C) used commonly in the semiconductor and photovoltaic industries is sufficient to release a significant amount of Cu species from the phosphorus-doped layer to the wafer bulk. This is enough to activate the so-called copper-related light-induced degradation (Cu-LID) which results in significant minority carrier lifetime degradation. We also show that the occurrence of Cu-LID in the wafer bulk can be eliminated both by reducing the RTA peak temperature from 800 degrees C to 550 degrees C and by slowing the following cooling rate from 40-60 degrees C/s to 4 degrees C/min. The behavior is similar to what is reported for Light and Elevated Temperature degradation, indicating that the role of Cu cannot be ignored when studying other LID phenomena. Numeric simulations describing the phosphorus diffusion and the gettering process reproduce the experimental trends and elucidate the underlying physical mechanisms. (C) 2018 Author(s).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要