The Nucleome of Developing Murine Rod Photoreceptors

bioRxiv(2018)

引用 5|浏览48
暂无评分
摘要
The nuclei of rod photoreceptors in mice and other nocturnal species have an unusual inverted chromatin structure: the heterochromatin is centrally located to help focus light and improve photosensitivity. To better understand this unique nuclear organization, we performed ultra-deep Hi-C analysis on murine retina at 3 stages of development and on purified rod photoreceptors. Predicted looping interactions from the Hi-C data were validated with fluorescence in situ hybridization (FISH). We discovered that a subset of retinal genes that are important for retinal development, cancer, and stress response are localized to the facultative heterochromatin domain. We also used machine learning to develop an algorithm based on our chromatin Hidden Markov Modeling (chromHMM) of retinal development to predict heterochromatin domains and study their dynamics during retinogenesis. FISH data for 264 genomic loci were used to train and validate the algorithm. The integrated data were then used to identify a developmental stage- and cell type-specific core regulatory circuit super-enhancer (CRC-SE) upstream of the Vsx2 gene, which is required for bipolar neuron expression. Deletion of the Vsx2 CRC-SE in mice led to the loss of bipolar neurons in the retina.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要