Heterogeneous response of Siberian tree-ring and stable isotope proxies to the largest Common Era volcanic eruptions

Climate of The Past Discussions(2018)

引用 3|浏览21
暂无评分
摘要
Abstract. Stratospheric volcanic eruptions have far-reaching impacts on global climate and society. Tree rings can provide valuable climatic information on these impacts across different spatial and temporal scales. Here we explore the suitability of tree-ring width (TRW), maximum latewood density (MXD), cell wall thickness (CWT), and δ13C and δ18O in tree-ring cellulose for the detection of climatic changes in northeastern Yakutia (YAK), eastern Taimyr (TAY) and Russian Altai (ALT) sites caused by six largest Common Era stratospheric volcanic eruptions (535, 540, 1257, 1640, 1815 and 1991). Our findings suggest that TRW, MXD, and CWT show strong summer air temperature anomalies in 536, 541–542, 1258–1259 at all study sites. However, they do not reveal distinct and coherent fingerprints after other eruptions. Based on δ13C data, 536 was extremely humid in YAK and TAY, whereas 541 and 542 were humid years in TAY and ALT. In contrast, the 1257 eruption of Samalas likely triggered a sequence of at least two dry summers across all three Siberian sites. No further extreme hydro-climatic anomalies occurred at Siberian sites in the aftermath of the 1991 eruption. Summer sunshine duration decreased significantly in 536, 541–542, 1258–1259 in YAK, and 536 in ALT. Conversely, 1991 was very sunny in YAK. Since climatic responses to large volcanic eruptions are different, and thus affect ecosystem functioning and productivity differently in space and time, a combined assessment of multiple tree-ring parameters is needed to provide a more complete picture of past climate dynamics, which in turns appears fundamental to validate global climate models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要