Accurate closed-form trajectories of light around a Kerr black hole using asymptotic approximants

CLASSICAL AND QUANTUM GRAVITY(2018)

引用 5|浏览17
暂无评分
摘要
Highly accurate closed-form expressions that describe the full trajectory of photons propagating in the equatorial plane of a Kerr black hole are obtained using asymptotic approximants. This work extends a prior study of the overall bending angle for photons (Barlow et al 2017 Class. Quantum Gray. 34 135017). The expressions obtained provide accurate trajectory predictions for arbitrary spin and impact parameters, and provide significant time advantages compared with numerical evaluation of the elliptic integrals that describe photon trajectories. To construct approximants, asymptotic expansions for photon deflection are required in various limits. To this end, complete expansions are derived for the azimuthal angle as a function of radial distance from the black hole in the far-distance and closest-approach (pericenter) limits, and new coefficients are reported for the bending angle in the weak-field limit (large impact parameter).
更多
查看译文
关键词
geodesics,light deflection,Kerr black holes,asymptotic approximants
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要