Global comparison of core-collapse supernova simulations in spherical symmetry

JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS(2018)

引用 106|浏览54
暂无评分
摘要
We present a comparison between several simulation codes designed to study the core-collapse supernova mechanism. We pay close attention to controlling the initial conditions and input physics in order to ensure a meaningful and informative comparison. Our goal is three-fold. First, we aim to demonstrate the current level of agreement between various groups studying the corecollapse supernova central engine. Second, we desire to form a strong basis for future simulation codes and methods to compare to. Lastly, we want this work to be a stepping stone for future work exploring more complex simulations of core-collapse supernovae, i.e., simulations in multiple dimensions and simulations with modern neutrino and nuclear physics. We compare the early (first similar to 500 ms after core bounce) spherically-symmetric evolution of a 20 M-circle dot progenitor star from six different core-collapse supernovae codes: 3DnSNeIDS A, AGILE-BOLTZTRAN, FLASH, FORNAX, GR1D, and PROMETHEUS-VERTEX. Given the diversity of neutrino transport and hydrodynamic methods employed, we find excellent agreement in many critical quantities, including the shock radius evolution and the amount of neutrino heating. Our results provide an excellent starting point from which to extend this comparison to higher dimensions and compare the development of hydrodynamic instabilities that are crucial to the supernova explosion mechanism, such as turbulence and convection.
更多
查看译文
关键词
core-collapse supernovae,neutrino transport,code comparison,neutron stars
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要