Spatiotemporal Correlation Uncovers Characteristic Lengths In Cardiac Tissue

arXiv: Biological Physics(2019)

引用 23|浏览18
暂无评分
摘要
Complex spatiotemporal patterns of action potential duration have been shown to occur in many mammalian hearts due to period-doubling bifurcations that develop with increasing frequency of stimulation. Here, through high-resolution optical mapping experiments and mathematical modeling, we introduce a characteristic spatial length of cardiac activity in canine ventricular wedges via a spatiotemporal correlation analysis, at different stimulation frequencies and during fibrillation. We show that the characteristic length ranges from 40 to 20 cm during one-to-one responses and it decreases to a specific value of about 3 cm at the transition from period-doubling bifurcation to fibrillation. We further show that during fibrillation, the characteristic length is about 1 cm. Another significant outcome of our analysis is the finding of a constitutive phenomenological law obtained from a nonlinear fitting of experimental data which relates the conduction velocity restitution curve with the characteristic length of the system. The fractional exponent of 3/2 in our phenomenological law is in agreement with the domain size remapping required to reproduce experimental fibrillation dynamics within a realistic cardiac domain via accurate mathematical models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要