A null test of general relativity based on a long-term comparison of atomic transition frequencies

NATURE PHYSICS(2018)

引用 31|浏览6
暂无评分
摘要
The local position invariance principle of general relativity stipulates that non-gravitational experiments should give outcomes that are independent of the position and orientation of the reference frames in which they have been performed. Here, we study the change in the rates of clocks on Earth with the spatial change of the solar potential, constraining the variation of a non-gravitational interaction—the hyperfine splitting in hydrogen and caesium atoms—to β = (2.2 ± 2.5) × 10 −7 , a factor of two improvement over previous estimates. Our result is based on the comparison between the long-term fractional frequency variation of four hydrogen masers that are part of an ensemble of clocks comprising the National Institute of Standards and Technology, Boulder, and the fractional frequencies of primary frequency standards operated by leading metrology laboratories in the United States, France, Germany, Italy and the United Kingdom over a period of more than 14 years. Using our results together with the previous best estimates of β , we impose strict limits on the variation of fundamental constants, resulting in a test of general relativity with an unprecedented level of precision.
更多
查看译文
关键词
Atomic and molecular physics,General relativity and gravity,Physics,general,Theoretical,Mathematical and Computational Physics,Classical and Continuum Physics,Atomic,Molecular,Optical and Plasma Physics,Condensed Matter Physics,Complex Systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要