Molecular-Level Kinetic Model for C12 Continuous Catalytic Reforming

ENERGY & FUELS(2018)

引用 14|浏览4
暂无评分
摘要
A detailed kinetic model for a continuous catalytic reforming (CCR) process was developed. The model included 447 naphtha molecules (C1-C12) that underwent 1469 reactions. Paraffin and naphthenic isomers up to C9 components were fully depicted, whereas aromatic isomers were fully described up to C10. Coking kinetics and the corresponding deactivation of the catalyst were integrated into the model. The steady state kinetic parameters were tuned using pilot plant data for a widely used industrial catalyst. To enable the use of commercial plant data, the energy balance and catalyst moving mechanism of typical CCR reactors were also formulated. The model was then used to simulate an industrial unit loaded with the same catalyst after deactivation calibration by adjusting a few deactivation parameters. The results showed that calculated PONA fractions, individual aromatic species, and the temperature drops of each reactor were in good accord with industrial data.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要