Numerical Analysis of the Effect of Scanning Speed on the Temperature Field Distribution for Laser Heat Treatment Applications

Al-Nahrain Journal for Engineering Sciences(2018)

引用 2|浏览0
暂无评分
摘要
One of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume.  The finite element analysis (FEA) was carried out using the APDL scripting language (ANSYS Parametric Design Language) that is provided by the commercial code ANSYS. Infrared (IR) thermography technique was used to explore the workpiece surface and to validate the obtained results. The work takes into account the effect of different speeds of the laser beam and pulses overlap on the temperature pattern of the material surface and depth.
更多
查看译文
关键词
Laser heating,Pulsed laser,FEA,Infrared thermography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要