Creating small circular, elliptical, and triangular droplets of quark-gluon plasma

C. Aidala,Y. Akiba,M. Alfred,V. Andrieux,K. Aoki,N. Apadula,H. Asano,C. Ayuso,B. Azmoun, V. Babintsev,A. Bagoly,N. S. Bandara,K. N. Barish,S. Bathe, A. Bazilevsky,M. Beaumier, R. Belmont, A. Berdnikov,Y. Berdnikov, D. S. Blau,M. Boer,J. S. Bok, M. L. Brooks,J. Bryslawskyj,V. Bumazhnov,C. Butler,S. Campbell,V. Canoa Roman,R. Cervantes,C. Y. Chi,M. Chiu,I. J. Choi,J. B. Choi,Z. Citron, M. Connors,N. Cronin,M. Csanád,T. Csörgő,T. W. Danley,M. S. Daugherity, G. David,K. DeBlasio,K. Dehmelt,A. Denisov,A. Deshpande,E. J. Desmond,A. Dion,D. Dixit, L. D. Liu,J. H. Do,A. Drees,K. A. Drees, M. Dumancic,J. M. Durham,A. Durum, T. Elder,A. Enokizono,H. En'yo,S. Esumi,B. Fadem,W. Fan,N. Feege,D. E. Fields,M. Finger,M. Jr. Finger,S. L. Fokin,J. E. Frantz,A. Franz,A. D. Frawley,Y. Fukuda,C. Gal, P. Gallus,P. Garg,H. Ge,F. Giordano,Y. Goto, N. Grau,S. V. Greene,M. Grosse Perdekamp,T. Gunji,H. Guragain,T. Hachiya,J. S. Haggerty,K. I. Hahn, H. Hamagaki,H. F. Hamilton, S. Y. Han,J. Hanks,S. Hasegawa,T. O. S. Haseler,X. He,T. K. Hemmick, J. C. Hill, K. Hill,A. Hodges,R. S. Hollis,K. Homma,B. Hong,T. Hoshino, N. Hotvedt, J. Huang, S. Huang, K. Imai, J. Imrek, M. Inaba, A. Iordanova, D. Isenhower, Y. Ito, D. Ivanishchev, B. V. Jacak, M. Jezghani, Z. Ji, X. Jiang, B. M. Johnson, V. Jorjadze, D. Jouan, D. S. Jumper, J. H. Kang, D. Kapukchyan, S. Karthas, D. Kawall, A. V. Kazantsev, V. Khachatryan, A. Khanzadeev, C. Kim, D. J. Kim, E. -J. Kim, M. Kim, M. H. Kim, D. Kincses, E. Kistenev, J. Klatsky, P. Kline, T. Koblesky, D. Kotov, S. Kudo, K. Kurita, Y. Kwon, J. G. Lajoie, E. O. Lallow, A. Lebedev, S. Lee, S. H. Lee, M. J. Leitch, Y. H. Leung, N. A. Lewis, X. Li, S. H. Lim, M. X. Liu, V-R Loggins, V. -R. Loggins, S. Lökös, K. Lovasz, D. Lynch, T. Majoros, Y. I. Makdisi, M. Makek, M. Malaev, V. I. Manko, E. Mannel, H. Masuda, M. McCumber, P. L. McGaughey, D. McGlinchey, C. McKinney, M. Mendoza, A. C. Mignerey, D. E. Mihalik, A. Milov, D. K. Mishra, J. T. Mitchell, G. Mitsuka, S. Miyasaka, S. Mizuno, P. Montuenga, T. Moon, D. P. Morrison, S. I. Morrow, T. Murakami, J. Murata, K. Nagai, K. Nagashima, T. Nagashima, J. L. Nagle, M. I. Nagy, I. Nakagawa, H. Nakagomi, K. Nakano, C. Nattrass, T. Niida, R. Nouicer, T. Novák, N. Novitzky, R. Novotny, A. S. Nyanin, E. O'Brien, C. A. Ogilvie,J. D. Orjuela Koop, J. D. Osborn, A. Oskarsson, G. J. Ottino, K. Ozawa, V. Pantuev, V. Papavassiliou, J. S. Park, S. Park, S. F. Pate, M. Patel, W. Peng, D. V. Perepelitsa, G. D. N. Perera,D. Yu. Peressounko, C. E. PerezLara, J. Perry, R. Petti, M. Phipps, C. Pinkenburg, R. P. Pisani, A. Pun, M. L. Purschke, P. V. Radzevich, K. F. Read, D. Reynolds, V. Riabov, Y. Riabov, D. Richford, T. Rinn, S. D. Rolnick, M. Rosati, Z. Rowan, J. Runchey, A. S. Safonov, T. Sakaguchi, H. Sako, V. Samsonov, M. Sarsour, K. Sato, S. Sato, B. Schaefer, B. K. Schmoll, K. Sedgwick, R. Seidl, A. Sen, R. Seto, A. Sexton, D. Sharma, I. Shein, T. -A. Shibata, K. Shigaki, M. Shimomura, T. Shioya, P. Shukla, A. Sickles, C. L. Silva, D. Silvermyr, B. K. Singh, C. P. Singh, V. Singh, M. J. Skoby, M. Slunečka, K. L. Smith, M. Snowball, R. A. Soltz, W. E. Sondheim, S. P. Sorensen, I. V. Sourikova, P. W. Stankus, S. P. Stoll, T. Sugitate, A. Sukhanov, T. Sumita, J. Sun, Z Sun, Z. Sun, S. Syed, J. Sziklai, A Takeda, K. Tanida, M. J. Tannenbaum, S. Tarafdar, A. Taranenko, A. Taranenko, G. Tarnai, R. Tieulent, A. Timilsina, T. Todoroki, M. Tomášek, C. L. Towell, R. S. Towell, I. Tserruya, Y. Ueda, B. Ujvari,H. W. van Hecke, S. Vazquez-Carson, J. Velkovska, M. Virius, V. Vrba, N. Vukman, X. R. Wang, Z. Wang, Y. Watanabe, Y. S. Watanabe, C. P. Wong, C. L. Woody, C. Xu, Q. Xu, L. Xue, S. Yalcin, Y. L. Yamaguchi, H. Yamamoto, A. Yanovich, P. Yin, J. H. Yoo, I. Yoon, H. Yu, I. E. Yushmanov, W. A. Zajc, A. Zelenski, S. Zharko, L. Zou

arXiv: Nuclear Experiment(2018)

引用 24|浏览83
暂无评分
摘要
The experimental study of the collisions of heavy nuclei at relativistic energies has established the properties of the quark-gluon plasma (QGP), a state of hot, dense nuclear matter in which quarks and gluons are not bound into hadrons. In this state, matter behaves as a nearly inviscid fluid that efficiently translates initial spatial anisotropies into correlated momentum anisotropies among the produced particles, producing a common velocity field pattern known as collective flow. In recent years, comparable momentum anisotropies have been measured in small-system proton-proton (p+p) and proton-nucleus (p+A) collisions, despite expectations that the volume and lifetime of the medium produced would be too small to form a QGP. Here, we report on the observation of elliptic and triangular flow patterns of charged particles produced in proton-gold (p+Au), deuteron-gold (d+Au), and helium-gold (^3He+Au) collisions at a nucleon-nucleon center-of-mass energy √(s__NN) = 200 GeV. The unique combination of three distinct initial geometries and two flow patterns provides unprecedented model discrimination. Hydrodynamical models, which include the formation of a short-lived QGP droplet, provide a simultaneous description of these measurements.
更多
查看译文
关键词
triangular droplets,plasma,quark-gluon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要