Translating Microscopic Molecular Motion into Macroscopic Body Motion: Reversible Self-Reshaping in the Solid State Transition of an Organic Crystal

CRYSTAL GROWTH & DESIGN(2018)

引用 12|浏览6
暂无评分
摘要
The amplification of microscopic molecular motions so as to produce a controlled macroscopic body effect is the main challenge in the development of molecular mechanical devices. That amplification requires the coherent and ordered movement of each molecule of a whole macroscopic set, such as that taking place in a single-crystal-to-single-crystal transition. Actually, single-crystal-to-single-crystal transitions in molecular crystals can produce a variety of mechanical effects potentially useful in the development of smart materials. A challenging issue in these dynamic crystals, propedeutic to many possible applications in devices, is the gaining of a strict control over the mechanical effects associated with the transition. Here we report an example in which the control of the mechanical effects was successfully obtained. The compound studied undergoes a reversible single-crystal-to-single-crystal transition at 71 degrees C, from a planar stacked to a herringbone type packing. To this transition, a reversible macroscopic self-reshaping of the crystal is associated. Depending on the morphology, the crystal specimen undergoes a reversible longitudinal expansion of about 20% or a reversible transverse expansion of 20%, the other two dimensions of the crystal specimen being substantially unchanged. The amount of the macroscopic reshaping effect (20%) fully matches the relative variation of the sole unit cell parameter that changes during the transition (from 8.139 to 9.666 angstrom) in a sort of scale-invariant process. This represents striking evidence of controlled translation of sub-nanometer molecular motions up to the macroscopic scale of body motion.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要