Auto Takeoff And Precision Terminal-Phase Landing Using An Experimental Optical Flow Model For Global Positioning System/Inertial Navigation System Enhancement

ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART B-MECHANICAL ENGINEERING(2019)

引用 8|浏览4
暂无评分
摘要
The high estimated position error in current commercial-off-the-shelf (GPS/INS) impedes achieving precise autonomous takeoff and landing (TOL) flight operations. To overcome this problem, in this paper, we propose an integrated global positioning system (GPS)/inertial navigation system (INS)/optical flow (OF) solution in which the OF provides an accurate augmentation to the GPS/INS. To ensure accurate and robust OF augmentation, we have used a robust modeling method to estimate OF based on a set of real-time experiments conducted under various simulated helicopter-landing scenarios. Knowing that the accuracy of the OF measurements is dependent on the accuracy of the height measurements, we have developed a real-time testing environment to model and validate the obtained dynamic OF model at various heights. The performance of the obtained OF model matches the real OF sensor with 87.70% fitting accuracy. An accuracy of 0.006 m/s mean error between the real OF sensor velocity and the velocity of the OF model is also achieved. The velocity measurements of the obtained OF model and the position of the GPS/INS are used in performing a dynamic model-based sensor fusion algorithm. In the proposed solution, the OF sensor is engaged when the vehicle approaches a landing spot that is equipped with a predefined landing pattern. The proposed solution has succeeded in performing a helicopter auto TOL with a maximum position error of 27 cm.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要