Mecanismos regulatorios del tono vascular pulmonar neonatal. Una perspectiva molecular

Revista Chilena De Enfermedades Respiratorias(2017)

引用 0|浏览2
暂无评分
摘要
The extrauterine-milieu adaptation includes a considerable increase in PaO2, that specifically induces structural and vasoactive changes at pulmonary circulation. Such changes transform a poor irrigated circulation into a circulation that receive ∼100% of neonatal cardiac output, supporting the normal alveolar-capillary gas exchange. Local regulation of basal neonatal pulmonary circulation is maintaining by a delicate equilibrium between vasoconstrictor and vasodilator agents. This equilibrium, allows to maintain the pulmonary circulation as an hemodynamic system with a high blood flow and a low vascular resistance. Vasocontrictors action allows actin and light-chain myosin interaction. Two main pathways induced this effect in smooth muscle cell: a) a calcium dependent pathway, that increases intracellular calcium, facilitating actin – myosin binding, and b) the independent calcium pathway, which achieves through consecutive phosphorylation reactions sensitize the proteins involved, promoting the binding of actin and light-chain myosin. These actions are mediated by agonists produced mainly in the pulmonary endothelium, such as endothelin-1 and thromboxane, or by agonists from other cell types such as serotonin. Vasodilator agents regulate the vasoconstrictor response, mainly by inhibiting signals that induce calcium-independent vasoconstriction, through activation of protein kinases, which in turn will inhibit the function of ROCK kinase, one of the last effectors of vasoconstriction before formation of the actin and light-chain myosin binding. This review will focus on describing these mechanisms of primal importance in the first hours of our lives as independent individuals.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要