Stressor-Layer-Induced Elastic Strain Sharing in SrTiO3 Complex Oxide Sheets

APPLIED PHYSICS LETTERS(2020)

引用 1|浏览10
暂无评分
摘要
A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO3 sheets is on the order of 10 4, matching the predictions of an elastic model. This approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect not achievable in heteroepitaxy on rigid substrates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要