Quantum Photonics Model For Nonclassical Light Generation Using Integrated Nanoplasmonic Cavity-Emitter Systems

PHYSICAL REVIEW A(2018)

引用 11|浏览6
暂无评分
摘要
The implementation of nonclassical light sources is becoming increasingly important for various quantum applications. A particularly interesting approach is to integrate such functionalities on a single chip as this could pave the way towards fully scalable quantum photonic devices. Several approaches using dielectric systems have been investigated in the past. However, it is still not understood how on-chip nanoplasmonic antennas, interacting with a single quantum emitter, affect the quantum statistics of photons reflected or transmitted in the guided mode of a waveguide. Here we investigate a quantum photonic platform consisting of an evanescently coupled nanoplasmonic cavity-emitter system and discuss the requirements for nonclassical light generation. We develop an analytical model that incorporates quenching due to the nanoplasmonic cavity to predict the quantum statistics of the transmitted and reflected guided waveguide light under weak coherent pumping. The analytical predictions match numerical simulations based on a master equation approach. It is moreover shown that for resonant excitation the degree of antibunching in transmission is maximized for an optimal cavity modal volume V-c and cavity-emitter distance s. In reflection, perfectly antibunched light can only be obtained for specific (V-c, s) combinations. Finally, our model also applies to dielectric cavities and as such can guide future efforts in the design and development of on-chip nonclassical light sources using dielectric and nanoplasmonic cavity-emitter systems.
更多
查看译文
关键词
Nanophotonic Waveguides
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要