Active and Stable Methane Oxidation Nano-Catalyst with Highly-Ionized Palladium Species Prepared by Solution Combustion Synthesis

CATALYSTS(2018)

引用 17|浏览11
暂无评分
摘要
We report on the synthesis and testing of active and stable nano-catalysts for methane oxidation. The nano-catalyst was palladium/ceria supported on alumina prepared via a one-step solution-combustion synthesis (SCS) method. As confirmed by X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HTEM), SCS preparative methodology resulted in segregating both Pd and Ce on the surface of the Al2O3 support. Furthermore, HTEM showed that bigger Pd particles (5 nm and more) were surrounded by CeO2, resembling a core shell structure, while smaller Pd particles (1 nm and less) were not associated with CeO2. The intimate Pd-CeO2 attachment resulted in insertion of Pd ions into the ceria lattice, and associated with the reduction of Ce4+ into Ce3+ ions; consequently, the formation of oxygen vacancies. XPS showed also that Pd had three oxidation states corresponding to Pd-0, Pd2+ due to PdO, and highly ionized Pd ions (Pd(2+x)+) which might originate from the insertion of Pd ions into the ceria lattice. The formation of intrinsic Ce3+ ions, highly ionized (Pd2+ species inserted into the lattice of CeO2) Pd ions (Pd(2+x)+) and oxygen vacancies is suggested to play a major role in the unique catalytic activity. The results indicated that the Pd-SCS nano-catalysts were exceptionally more active and stable than conventional catalysts. Under similar reaction conditions, the methane combustion rate over the SCS catalyst was similar to 18 times greater than that of conventional catalysts. Full methane conversions over the SCS catalysts occurred at around 400 degrees C but were not shown at all with conventional catalysts. In addition, contrary to the conventional catalysts, the SCS catalysts exhibited superior activity with no sign of deactivation in the temperature range between similar to 400 and 800 degrees C.
更多
查看译文
关键词
methane oxidation,palladium oxide,ceria catalyst,palladium oxide,ceria solid solution,solution combustion synthesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要