Mechanical stress relaxation in adhesively clamped carbon nanotube resonators

AIP ADVANCES(2018)

引用 9|浏览15
暂无评分
摘要
We report a detailed experimental investigation of the adhesive clamping instability in CNT nanoresonators fabricated on silicon wafers with palladium electrodes and suspended CNT channels. The nanotube is clamped down onto the palladium electrodes adhesively by van der Waals forces and operates in the string regime. We observe a decrease in the nanotube tension when the device is operated in large amplitude regime. This mechanical stress relaxation, or decrease in internal stress of the nanotube, was observed as a frequency downshift resulting from weak clamping behavior between the nanotube and the underlying palladium surface. Frequency downshifts from 97.5 MHz to 39 MHz with 60 % stress relaxation and from 72.7 MHz to 60.5 MHz (17 % relaxation) were observed for two devices. Q-factors show no change due to decrease in internal stress. Our temperature measurements in the range of 298-420 K suggest that Q-factors might arise from the interplay between adhesive clamping associated dissipation mechanisms and spectral broadening due to thermal fluctuations. (c) 2018 Author(s).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要