Methods for multiple-telescope beam imaging and guiding in the near-infrared

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2018)

引用 22|浏览43
暂无评分
摘要
Atmospheric turbulence and precise measurement of the astrometric baseline vector between any two telescopes are two major challenges in implementing phase-referenced interferometric astrometry and imaging. They limit the performance of a fibre-fed interferometer by degrading the instrument sensitivity and the precision of astrometric measurements and by introducing image reconstruction errors due to inaccurate phases. A multiple-beam acquisition and guiding camera was built to meet these challenges for a recently commissioned four-beam combiner instrument, GRAVITY, at the European Southern Observatory Very Large Telescope Interferometer. For each telescope beam, it measures (a) field tip-tilts by imaging stars in the sky, (b) telescope pupil shifts by imaging pupil reference laser beacons installed on each telescope using a 2x2 lenslet and (c) higher-order aberrations using a 9x9 Shack-Hartmann. The telescope pupils are imaged to provide visual monitoring while observing. These measurements enable active field and pupil guiding by actuating a train of tip-tilt mirrors placed in the pupil and field planes, respectively. The Shack-Hartmann measured quasi-static aberrations are used to focus the auxiliary telescopes and allow the possibility of correcting the non-common path errors between the adaptive optics systems of the unit telescopes and GRAVITY. The guiding stabilizes the light injection into single-mode fibres, increasing sensitivity and reducing the astrometric and image reconstruction errors. The beam guiding enables us to achieve an astrometric error of less than 50 mu as. Here, we report on the data reduction methods and laboratory tests of the multiple-beam acquisition and guiding camera and its performance on-sky.
更多
查看译文
关键词
atmospheric effects,instrumentation: adaptive optics,instrumentation: high angular resolution,instrumentation: interferometers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要