Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere

Science China-earth Sciences, pp. 353-385, 2018.

Cited by: 6|Views44
Weibo:
There was rare mafic magmatism in the North China Craton between ~200 Ma to ~144 Ma, indicating that Paleo-Pacific slab was coupled with the overlying NCC mantle with a low geothermal gradient for the subcontinental subduction zone

Abstract:

The North China Craton (NCC) has been thinned from >200 km to <100 km in its eastern part. The ancient subcontinental lithospheric mantle (SCLM) has been replaced by the juvenile SCLM in the Meoszoic. During this period, the NCC was destructed as indicated by extensive magmatism in the Early Cretaceous. While there is a consensus on the t...More

Code:

Data:

0
Introduction
  • The IAB-like mafic igneous rocks in North China show strongly enriched Sr-Nd isotope compositions (Figure 6), and their sources were called as the cratonic mantle (Menzies et al, 2007).
  • The lower crust delamination may not serve the dominate mechanism for the recycling of crustal components in the mantle sources of IAB-like mafic igneous rocks in North China.
Highlights
  • Craton is the tectonic system of ancient continental lithosphere that is stable since its formation in the Precambrian
  • This study presents a compilation of geochemical data available for Meosozic mafic magmatic rocks in North China
  • According to the above petrogenetic interpretation of geochemical data for the Mesozoic mafic igneous rocks in North China, we have quantitatively modeled the generation of magma sources and their partial melting to produce mafic magmas
  • For the juvenile oceanic island basalts (OIB)-like mafic igneous rocks, we assume that the subducting oceanic crust was dehydrated at the subarc depths, underwent partial melting at the postarc depths to produce felsic melts, which metasomatized the overlying mantle peridotite to create the mantle sources of intraplate basalts following the methods used in Xu and Zheng (2017)
  • Mesozoic mafic igneous rocks in North China can be categorized into two series in geochemical composition
  • There was rare mafic magmatism in the North China Craton (NCC) between ~200 Ma to ~144 Ma, indicating that Paleo-Pacific slab was coupled with the overlying NCC mantle with a low geothermal gradient for the subcontinental subduction zone
Results
  • The trace element compositions of OIB-like mafic igneous rocks are somehow inherited from the subducted oceanic crust (Hofmann and White, 1982; Hofmann et al, 1986; Sun et al, 2008; Huang and Zheng, 2017), which dehydrates at subarc depths of 80−160 km (e.g., Stracke et al, 2003; Zhang et al, 2009; Xu et al, 2017; Xu and Zheng, 2017).
  • The crustal component in the mantle sources of Mesozoic mafic igneous rocks in North China is mainly the felsic melts from the subducted oceanic crust.
  • Similar to the Cenozoic continental basalts in North China, Mesozoic OIB-like mafic igneous rocks show a negative correlation between initial 87Sr/86Sr and 206Pb/204Pb ratios (Figure 6b).
  • For the juvenile OIB-like mafic igneous rocks, the authors assume that the subducting oceanic crust was dehydrated at the subarc depths, underwent partial melting at the postarc depths to produce felsic melts, which metasomatized the overlying mantle peridotite to create the mantle sources of intraplate basalts following the methods used in Xu and Zheng (2017).
  • The ancient IAB-like mafic magmatism did not terminate until ~108 Ma. According to the petrological studies of mantle peridotite xenoliths in North China, peridotite xenoliths hosted by Mesozoic continental basalts contain high Mg# (>90) olivine, high Mg# (>90) and low Al2O3 (<5 wt.%) clinopyroxene (Zheng et al, 2001, 2006a, 2007; Ying et al, 2006; Chu et al, 2009; Zhang H F et al, 2001, 2008; Zhang J et al, 2011; Liu S et al, 2012) and show enriched Sr-Nd isotope compositions (Zhang H F et al, 2008), suggesting that the lithospheric mantle before the Mesozoic is typical of refractory craton mantle due to extraction of mafic melts.
  • The lithospheric mantle in North China is not completely of juvenile nature since the Late Mesozoic, but its upper part is still of cratonic nature wheras its lower part consists of the fertile lithology containing the mantle sources of Mesozoic-Cenozoic OIB-like mafic igneous rocks.
Conclusion
  • The Mg isotope studies of continental basalts from eastern China indicate that the mantle sources of these OIB-like basalts may be generated by metasomatic reaction of peridotite with carbonate melts released from the subducted oceanic slab (Huang et al, 2015; Li S G et al, 2017).
  • Whereas the subduction of Paleo-Pacific slab beneath the cratonic mantle is the firstoder geodynamic mechanism for such two-stage processes, the thermal/chemical erosion and lower crust foundering are the second-order mechanisms for them
Summary
  • The IAB-like mafic igneous rocks in North China show strongly enriched Sr-Nd isotope compositions (Figure 6), and their sources were called as the cratonic mantle (Menzies et al, 2007).
  • The lower crust delamination may not serve the dominate mechanism for the recycling of crustal components in the mantle sources of IAB-like mafic igneous rocks in North China.
  • The trace element compositions of OIB-like mafic igneous rocks are somehow inherited from the subducted oceanic crust (Hofmann and White, 1982; Hofmann et al, 1986; Sun et al, 2008; Huang and Zheng, 2017), which dehydrates at subarc depths of 80−160 km (e.g., Stracke et al, 2003; Zhang et al, 2009; Xu et al, 2017; Xu and Zheng, 2017).
  • The crustal component in the mantle sources of Mesozoic mafic igneous rocks in North China is mainly the felsic melts from the subducted oceanic crust.
  • Similar to the Cenozoic continental basalts in North China, Mesozoic OIB-like mafic igneous rocks show a negative correlation between initial 87Sr/86Sr and 206Pb/204Pb ratios (Figure 6b).
  • For the juvenile OIB-like mafic igneous rocks, the authors assume that the subducting oceanic crust was dehydrated at the subarc depths, underwent partial melting at the postarc depths to produce felsic melts, which metasomatized the overlying mantle peridotite to create the mantle sources of intraplate basalts following the methods used in Xu and Zheng (2017).
  • The ancient IAB-like mafic magmatism did not terminate until ~108 Ma. According to the petrological studies of mantle peridotite xenoliths in North China, peridotite xenoliths hosted by Mesozoic continental basalts contain high Mg# (>90) olivine, high Mg# (>90) and low Al2O3 (<5 wt.%) clinopyroxene (Zheng et al, 2001, 2006a, 2007; Ying et al, 2006; Chu et al, 2009; Zhang H F et al, 2001, 2008; Zhang J et al, 2011; Liu S et al, 2012) and show enriched Sr-Nd isotope compositions (Zhang H F et al, 2008), suggesting that the lithospheric mantle before the Mesozoic is typical of refractory craton mantle due to extraction of mafic melts.
  • The lithospheric mantle in North China is not completely of juvenile nature since the Late Mesozoic, but its upper part is still of cratonic nature wheras its lower part consists of the fertile lithology containing the mantle sources of Mesozoic-Cenozoic OIB-like mafic igneous rocks.
  • The Mg isotope studies of continental basalts from eastern China indicate that the mantle sources of these OIB-like basalts may be generated by metasomatic reaction of peridotite with carbonate melts released from the subducted oceanic slab (Huang et al, 2015; Li S G et al, 2017).
  • Whereas the subduction of Paleo-Pacific slab beneath the cratonic mantle is the firstoder geodynamic mechanism for such two-stage processes, the thermal/chemical erosion and lower crust foundering are the second-order mechanisms for them
Tables
  • Table1: The trace element and Sr-Nd isotope compositions of starting materials used in model calculationsa)
  • Table2: Fluid-mineral trace element partition coefficients used in model calculationsa)
  • Table3: Melt-mineral trace element partition coefficients used in model calculationsa)
  • Table4: Proportions (%) of phases used in model calculationsa)
Download tables as Excel
Funding
  • This work was supported by the National Key Basic Research Program of China (Grant No 2015CB856100) and the National Natural Science Foundation of China (Grant No 41690620)
Reference
  • An M, Shi Y. 2006. Lithospheric thickness of the Chinese continent. Phys Earth Planet Inter, 159: 257–266
    Google ScholarLocate open access versionFindings
  • Arcay D, Lallemand S, Doin M P. 2008. Back-arc strain in subduction zones: Statistical observations versus numerical modeling. Geochem Geophys Geosyst, 9: Q05015
    Google ScholarLocate open access versionFindings
  • Atwater T, Severinghaus J. 1989. Tectonic maps of the northeast Pacific. In: Winterer E L, Hussong D M, Decker R W, eds. The Eastern Pacific Ocean and Hawaii, Vol. N: The Geology of North America. Geological Society of America. 15–20
    Google ScholarFindings
  • Ayers J. 1998. Trace element modeling of aqueous fluid -peridotite interaction in the mantle wedge of subduction zones. Contrib Mineral Petrol, 132: 390–404
    Google ScholarLocate open access versionFindings
  • Bercovici D, Karato S I. 2003. Whole-mantle convection and the transitionzone water filter. Nature, 425: 39–44
    Google ScholarLocate open access versionFindings
  • Brey G P, Girnis A V, Bulatov V K, Höfer H E, Gerdes A, Woodland A B. 2015. Reduced sediment melting at 7.5–12 GPa: Phase relations, geochemical signals and diamond nucleation. Contrib Mineral Petrol, 170: 1−25 Cai Y C, Fan H R, Santosh M, Liu X, Hu F F, Yang K F, Lan T G, Yang Y
    Google ScholarLocate open access versionFindings
  • H, Liu Y. 2013. Evolution of the lithospheric mantle beneath the southeastern North China Craton: Constraints from mafic dikes in the Jiaobei terrain. Gondwana Res, 24: 601–621 Carlson R W, Pearson D G, James D E. 2005.
    Google ScholarLocate open access versionFindings
  • DePaolo D J, Daley E E. 2000. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chem Geol, 169: 157–185
    Google ScholarLocate open access versionFindings
  • Duan C, Mao J, Xie G, Chen Z, Ma G, Wang Z, Chen T, Li W. 2016. Zircon U-Pb geochronological and Hf isotope study on Tiaojishan volcanic Formation, Mujicun, North Taihang Mountain and implications for regional metallogeny and magmatism (in Chinese with English abstract). Acta Geol Sin, 90: 250−266
    Google ScholarLocate open access versionFindings
  • Elsasser W M. 1971. Sea-floor spreading as thermal convection. J Geophys Res, 76: 1101–1112
    Google ScholarLocate open access versionFindings
  • Engebretson D C, Cox A, Gordon R G. 1985. Relative motions between oceanic and continental plates in the Pacific Basin. Geol Soc Am Spec Paper, 206: 1−60
    Google ScholarLocate open access versionFindings
  • English J M, Johnston S T, Wang K. 2003. Thermal modelling of the Laramide orogeny: Testing the flat-slab subduction hypothesis. Earth Planet Sci Lett, 214: 619–632
    Google ScholarLocate open access versionFindings
  • Fan W M, Zhang H F, Baker J, Jarvis K E, Mason P R D, Menzies M A. 2000. On and off the North China Craton: Where is the archaean keel? J Petrol, 41: 933–950
    Google ScholarLocate open access versionFindings
  • Fan W M, Guo F, Wang Y J, Lin G, Zhang M. 2001. Post-orogenic bimodal volcanism along the Sulu orogenic belt in Eastern China. Phys Chem Earth Part A-Solid Earth Geodesy, 26: 733–746
    Google ScholarLocate open access versionFindings
  • Foley S F. 2008. Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci, 1: 503–510
    Google ScholarLocate open access versionFindings
  • Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces of plate motion. Geophys J Int, 43: 163–200
    Google ScholarLocate open access versionFindings
  • Fukao Y, Obayashi M, Inoue H, Nenbai M. 1992. Subducting slabs stagnant in the mantle transition zone. J Geophys Res, 97: 4809–4822
    Google ScholarLocate open access versionFindings
  • Fukao Y, Widiyantoro S, Obayashi M. 2001. Stagnant slabs in the upper and lower mantle transition region. Rev Geophys, 39: 291–323
    Google ScholarLocate open access versionFindings
  • Fukao Y, Obayashi M, Nakakuki T. 2009. Stagnant slab: A review. Annu Rev Earth Planet Sci, 37: 19–46
    Google ScholarLocate open access versionFindings
  • Gao S, Rudnick R L, Carlson R W, McDonough W F, Liu Y S. 2002. ReOs evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett, 198: 307–322
    Google ScholarLocate open access versionFindings
  • Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897
    Google ScholarLocate open access versionFindings
  • Gao S, Rudnick R L, Xu W L, Yuan H L, Liu Y S, Walker R J, Puchtel I S, Liu X, Huang H, Wang X R, Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 270: 41–53
    Google ScholarLocate open access versionFindings
  • Gao S, Zhang J F, Xu W L, Liu Y S. 2009. Delamination and destruction of the North China Craton. Sci Bull, 54: 3367–3378
    Google ScholarLocate open access versionFindings
  • Gerbode C, Dasgupta R. 2010. Carbonate-fluxed melting of MORB-like pyroxenite at 2.9 GPa and genesis of HIMU ocean island basalts. J Petrol, 51: 2067–2088
    Google ScholarLocate open access versionFindings
  • Gerya T V, Yuen D A. 2003. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet Sci Lett, 212: 47–62
    Google ScholarLocate open access versionFindings
  • Gerya T V, Yuen D A, Sevre E O D. 2004. Dynamical causes for incipient magma chambers above slabs. Geology, 32: 89–92
    Google ScholarLocate open access versionFindings
  • Gerya T, Stöckhert B. 2006. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins. Int J Earth Sci (Geol Rundsch), 95: 250–274
    Google ScholarLocate open access versionFindings
  • Gerya T V, Connolly J A D, Yuen D A, Gorczyk W, Capel A M. 2006. Seismic implications of mantle wedge plumes. Phys Earth Planet Inter, 156: 59–74
    Google ScholarLocate open access versionFindings
  • Gerya T V, Connolly J A D, Yuen D A. 2008a. Why is terrestrial subduction one-sided? Geology, 36: 43–46
    Google ScholarLocate open access versionFindings
  • Gerya T V, Perchuk L L, Burg J P. 2008b. Transient hot channels: Perpetrating and regurgitating ultrahigh-pressure, high-temperature crustmantle associations in collision belts. Lithos, 103: 236–256
    Google ScholarLocate open access versionFindings
  • Gerya T V, Meilick F I. 2011. Geodynamic regimes of subduction under an active margin: Effects of rheological weakening by fluids and melts. J Metamorph Geol, 29: 7–31
    Google ScholarLocate open access versionFindings
  • Kiseeva E S, Yaxley G M, Hermann J, Litasov K D, Rosenthal A, Kamenetsky V S. 2012. An Experimental Study of Carbonated Eclogite at 3.5–5.5 GPa—Implications for Silicate and Carbonate Metasomatism in the Cratonic Mantle. J Petrol, 53: 727–759
    Google ScholarLocate open access versionFindings
  • Kuang Y S, Wei X, Hong L B, Ma J L, Pang C J, Zhong Y T, Zhao J X, Xu Y G. 2012. Petrogenetic evaluation of the Laohutai basalts from North China Craton: Melting of a two-component source during lithospheric thinning in the late Cretaceous–early Cenozoic. Lithos, 154: 68–82
    Google ScholarLocate open access versionFindings
  • Kuritani T, Ohtani E, Kimura J I. 2011. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nat Geosci, 4: 713–716
    Google ScholarLocate open access versionFindings
  • Kuritani T, Kimura J I, Ohtani E, Miyamoto H, Furuyama K. 2013. Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China. Lithos, 156-159: 1–12
    Google ScholarLocate open access versionFindings
  • Kukačka M, Matyska C. 2008. Numerical model of heat flow in back-arc regions. Earth Planet Sci Lett, 276: 243–252
    Google ScholarLocate open access versionFindings
  • Kusky T M. 2011. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Res, 20: 26–35
    Google ScholarLocate open access versionFindings
  • Kusky T M, Windley B F, Wang L, Wang Z, Li X, Zhu P. 2014. Flat slab subduction, trench suction, and craton destruction: Comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics, 630: 208–221
    Google ScholarLocate open access versionFindings
  • Kusky T M, Polat A, Windley B F, Burke K C, Dewey J F, Kidd W S F, Maruyama S, Wang J P, Deng H, Wang Z S, Wang C, Fu D, Li X W, Peng H T. 2016. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: A record of outward growth of Precambrian continents. Earth-Sci Rev, 162: 387–432
    Google ScholarLocate open access versionFindings
  • Krystopowicz N J, Currie C A. 2013. Crustal eclogitization and lithosphere delamination in orogens. Earth Planet Sci Lett, 361: 195–207
    Google ScholarLocate open access versionFindings
  • Lallemand S. 2016. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-BoninMariana subduction. Prog Earth Planet Sci, 3: 15
    Google ScholarLocate open access versionFindings
  • Le Maitre R W. 2002. Igneous Rocks: A Classification and Glossary of Terms. 2nd ed. Cambridge: Cambridge University Press
    Google ScholarFindings
  • Le Pichon X. 1968. Sea-floor spreading and continental drift. J Geophys Res, 73: 3661–3697
    Google ScholarLocate open access versionFindings
  • Lee C T A, Luffi P, Chin E J. 2011. Building and destroying continental mantle. Annu Rev Earth Planet Sci, 39: 59–90
    Google ScholarLocate open access versionFindings
  • Lei J S, Zhao D P. 2005. P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics, 397: 281–295
    Google ScholarLocate open access versionFindings
  • Li W, Li X, Lu F, Zhou Y, Zhang D. 2002. Geological characteristics and its setting for volcanic rocks of early Cretaceous Yixian Formation in western Liaoning province, eastern China (in Chinese with English abstract). Acta Petrol Sin, 18: 193−204
    Google ScholarLocate open access versionFindings
  • Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179–182
    Google ScholarLocate open access versionFindings
  • Li C, van der Hilst R D. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. J Geophys Res, 115: B07308
    Google ScholarLocate open access versionFindings
  • Li J, Yuen D A. 2014. Mid-mantle heterogeneities associated with Izanagi plate: Implications for regional mantle viscosity. Earth Planet Sci Lett, 385: 137–144
    Google ScholarLocate open access versionFindings
  • Li H Y, Huang X L, Guo H. 2014. Geochemistry of Cenozoic basalts from the Bohai Bay Basin: Implications for a heterogeneous mantle source and lithospheric evolution beneath the eastern North China Craton. Lithos, 196-197: 54–66
    Google ScholarLocate open access versionFindings
  • Li Y Q, Ma C Q, Robinson P T, Zhou Q, Liu M L. 2015. Recycling of oceanic crust from a stagnant slab in the mantle transition zone: Evidence from Cenozoic continental basalts in Zhejiang Province, SE China. Lithos, 230: 146–165
    Google ScholarLocate open access versionFindings
  • Li H Y, Xu Y G, Ryan J G, Huang X L, Ren Z Y, Guo H, Ning Z G. 2016a. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab. Geochim Cosmochim Acta, 178: 1–19
    Google ScholarLocate open access versionFindings
  • McKenzie D P, Parker R L. 1967. The North Pacific: An example of tectonics on a sphere. Nature, 216: 1276–1280
    Google ScholarLocate open access versionFindings
  • Meng F, Xue H, Li T, Yang H, Liu F. 2005. Enriched characteristics of Late Mesozoic mantle under the Sulu orogenic belt: Geochemical evidence from gabbro in Rushan (in Chinese with English abstract). Acta Petrol Sin, 21: 1583−1592
    Google ScholarLocate open access versionFindings
  • Menzies M A, Fan W, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geol Soc London Special Publ, 76: 71–81
    Google ScholarLocate open access versionFindings
  • Menzies M, Xu Y, Zhang H, Fan W. 2007. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 96: 1–21
    Google ScholarLocate open access versionFindings
  • Miyashiro A. 1986. Hot regions and the origin of marginal basins in the western Pacific. Tectonophysics, 122: 195–216
    Google ScholarLocate open access versionFindings
  • Morlidge M, Pawley A, Droop G. 2006. Double carbonate breakdown reactions at high pressures: An experimental study in the system CaOMgO-FeO-MnO-CO2. Contrib Mineral Petrol, 152: 365–373
    Google ScholarLocate open access versionFindings
  • Molnar P, Houseman G A, Conrad C P. 1998. Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: Effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer. Geophys J Int, 133: 568–584
    Google ScholarLocate open access versionFindings
  • Morgan W J. 1968.
    Google ScholarFindings
  • Rises, trenches, great faults, and crustal blocks. J Geophys Res, 73: 1959–1982
    Google ScholarLocate open access versionFindings
  • Müller R D, Sdrolias M, Gaina C, Steinberger B, Heine C. 2008. Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319: 1357–1362
    Google ScholarLocate open access versionFindings
  • Nakanishi M, Tamaki K, Kobayashi K. 1992. A new Mesozoic isochron chart of the northwestern Pacific Ocean: Paleomagnetic and tectonic implications. Geophys Res Lett, 19: 693–696
    Google ScholarLocate open access versionFindings
  • Nash W P, Crecraft H R. 1985. Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta, 49: 2309–2322
    Google ScholarLocate open access versionFindings
  • Nikolaeva K, Gerya T V, Connolly J A D. 2008. Numerical modelling of crustal growth in intraoceanic volcanic arcs. Phys Earth Planet Inter, 171: 336–356
    Google ScholarLocate open access versionFindings
  • Niu Y L. 2005. Generation and evolution of basaltic magmas: Some basic concepts and a hypothesis for the origin of the Mesozoic-Cenozoic volcanism in eastern China. Geol J China Univ, 11: 9–46
    Google ScholarLocate open access versionFindings
  • Nohda S, Tatsumi Y, Otofuji Y, Matsuda T, Ishizaka K. 1988. Asthenospheric injection and back-arc opening: Isotopic evidence from Northeast Japan. Chem Geol, 68: 317–327
    Google ScholarLocate open access versionFindings
  • O’Connor J M, Steinberger B, Regelous M, Koppers A A P, Wijbrans J R, Haase K M, Stoffers P, Jokat W, Garbe-Schönberg D. 2013. Constraints on past plate and mantle motion from new ages for the HawaiianEmperor Seamount Chain. Geochem Geophys Geosyst, 14: 4564−4584
    Google ScholarLocate open access versionFindings
  • Ohtani E, Mizobata H, Yurimoto H. 2000. Stability of dense hydrous magnesium silicate phases in the systems Mg2SiO4-H2O and MgSiO3H2O at pressures up to 27 GPa. Phys Chem Miner, 27: 533–544
    Google ScholarLocate open access versionFindings
  • Ohtani E, Litasov K D, Hosoya T, Kubo T, Kondo T. 2004. Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter, 143-144: 255–269
    Google ScholarLocate open access versionFindings
  • Ohtani E, Zhao D. 2009. The role of water in the deep upper mantle and transition zone: Dehydration of stagnant slabs and its effects on the big mantle wedge. Rus Geol Geophys, 50: 1073–1078
    Google ScholarLocate open access versionFindings
  • Okamura S, Arculus R J, Martynov Y A. 2005. Cenozoic magmatism of the north-eastern Eurasian margin: The role of lithosphere versus asthenosphere. J Petrol, 46: 221–253
    Google ScholarLocate open access versionFindings
  • O’Reilly S Y, Griffin W L, Djomani Y H P, Morgan P. 2001. Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time. GSA Today, 11: 4−10
    Google ScholarLocate open access versionFindings
  • Pearson D G, Brenker F E, Nestola F, McNeill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507: 221–224
    Google ScholarLocate open access versionFindings
  • Pei F, Xu W, Wang Q, Wang D, Lin J. 2004. Mesozoic basalt and mineral chemistry of the mantle-derived xenocrysts in Feixian, western Shandong, China: Constraints on the nature of Mesozoic lithospheric mantle (in Chinese with English abstract). Geol J China Univ, 10: 88−97
    Google ScholarLocate open access versionFindings
  • Peslier A H, Woodland A B, Bell D R, Lazarov M. 2009. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature, 467: 78–81
    Google ScholarLocate open access versionFindings
  • Pilet S, Baker M B, Muntener O, Stolper E M. 2011. Monte carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. J Petrol, 52: 1415–1442
    Google ScholarLocate open access versionFindings
  • Plank T. 2014. The chemical composition of subducting sediments. Treatise Geochem, 4: 607−629
    Google ScholarLocate open access versionFindings
  • Platt J P, England P C. 1994. Convective removal of lithosphere beneath mountain belts: Thermal and mechanical consequences. Am J Sci, 294: 307–336
    Google ScholarLocate open access versionFindings
  • Poli S, Schmidt M W. 2002. Petrology of subducted slabs. Annu Rev Earth Planet Sci, 30: 207–235
    Google ScholarLocate open access versionFindings
  • Princivalle F, De Min A, Lenaz D, Scarbolo M, Zanetti A. 2014. Ultramafic xenoliths from Damaping (Hannuoba region, NE-China): Petrogenetic implications from crystal chemistry of pyroxenes, olivine and Cr-spinel and trace element content of clinopyroxene. Lithos, 188: 3–14
    Google ScholarLocate open access versionFindings
  • Prodehl C, Mooney W D. 2012. Exploring the Earth’s crust—History and results of controlled-source seismology. Geol Soc Am Mem, 208: 1 −764
    Google ScholarLocate open access versionFindings
  • Qian Q, Hermann J. 2013. Partial melting of lower crust at 10–15 kbar: Constraints on adakite and TTG formation. Contrib Mineral Petrol, 165: 1195–1224
    Google ScholarLocate open access versionFindings
  • Qiao Y C, Guo Z Q, Shi Y L. 2013. Thermal convection thinning of the North China Craton: Numerical simulation. Sci China Earth Sci, 56: 773–782
    Google ScholarLocate open access versionFindings
  • Ramos V A, Folguera A. 2009. Andean flat-slab subduction through time. Geol Soc Spec Publ, 327: 31–54
    Google ScholarLocate open access versionFindings
  • Richard G, Bercovici D, Karato S I. 2006. Slab dehydration in the Earth’s mantle transition zone. Earth Planet Sci Lett, 251: 156–167
    Google ScholarLocate open access versionFindings
  • Richard G C, Iwamori H. 2010. Stagnant slab, wet plumes and Cenozoic volcanism in East Asia. Phys Earth Planet Inter, 183: 280–287
    Google ScholarLocate open access versionFindings
  • Ringwood A E. 1990. Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem Geol, 82: 187 −207
    Google ScholarLocate open access versionFindings
  • Rudnick R L. 1995. Making continental crust. Nature, 378: 571–578 Rudnick R L, Gao S. 2014. Composition of the continental crust. Treatise
    Google ScholarLocate open access versionFindings
  • Geochem, 4: 1−51 Sakamaki T, Suzuki A, Ohtani E. 2006. Stability of hydrous melt at the base of the Earth's upper mantle. Nature, 439: 192–194 Sakuyama T, Tian W, Kimura J I, Fukao Y, Hirahara Y, Takahashi T, Senda R, Chang Q, Miyazaki T, Obayashi M, Kawabata H, Tatsumi Y. 2013.
    Google ScholarLocate open access versionFindings
  • Chem Geol, 359: 32–48 Sakuyama T, Nagaoka S, Miyazaki T, Chang Q, Takahashi T, Hirahara Y, Senda R, Itaya T, Kimura J I, Ozawa K. 2014.
    Google ScholarFindings
  • J Petrol, 55: 499–528 Salters V J M, Stracke A. 2004.
    Google ScholarFindings
  • Geochem Geophys Geosyst, 5: Q05B07 Sato K, Katsura T. 2001.
    Google ScholarFindings
  • Earth Planet Sci Lett, 184: 529–534 Schmid C, Goes S, van der Lee S, Giardini D. 2002.
    Google ScholarFindings
  • Earth Planet Sci Lett, 204: 17–32 Schmidt M W, Vielzeuf D, Auzanneau E. 2004.
    Google ScholarFindings
  • Earth Planet Sci Lett, 228: 65–84 Scire A, Zandt G, Beck S, Long M, Wagner L, Minaya E, Tavera H. 2016.
    Google ScholarLocate open access versionFindings
  • Geophys J Int, 204: 457–479 Seton M, Müller R D, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M. 2012.
    Google ScholarFindings
  • Earth-Sci Rev, 113: 212–270 Sizova E, Gerya T, Brown M, Perchuk L L. 2010.
    Google ScholarFindings
  • Lithos, 116: 209– 229 Shen Z, Huo Z, Yu F, Chen Z, Li Q, Ma G, Ge F, Wang Z. 2015.
    Google ScholarFindings
  • Acta Petrol Sin, 31: 1409−1420 Sleep N H. 2005.
    Google ScholarFindings
  • Annu Rev Earth Planet Sci, 33: 369–393 Spandler C, Yaxley G, Green D H, Rosenthal A. 2008.
    Google ScholarLocate open access versionFindings
  • J Petrol, 49: 771–795 Spandler C, Yaxley G, Green D H, Scott D. 2010.
    Google ScholarFindings
  • Contrib Mineral Petrol, 160: 569– 589 Staudigel H, Plank T, White B, Schmincke H U. 1996.
    Google ScholarFindings
  • Geophys Monogr, 96: 19−38 Stern R J. 2004.
    Google ScholarFindings
  • Earth Planet Sci Lett, 226: 275–292 Stracke A, Bizimis M, Salters V J M. 2003.
    Google ScholarFindings
  • Geochem Geophys Geosyst, 4: 8003 Sun S S, McDonough W F. 1989.
    Google ScholarFindings
  • Geol Soc Spec Publ, 42: 313–345 Sun W D, Hu Y H, Kamenetsky V S, Eggins S M, Chen M, Arculus R J. 2008.
    Google ScholarFindings
  • Geochim Cosmochim Acta, 72: 3542–3549 Suzuki A, Ohtani E, Kato T. 1995.
    Google ScholarFindings
  • Science, 269: 216–218 Tang Y J, Zhang H F, Ying J F, Zhang J, Liu X M. 2008.
    Google ScholarLocate open access versionFindings
  • Lithos, 101: 435–452 Tang Y J, Zhang H F, Nakamura E, Ying J F. 2011.
    Google ScholarFindings
  • Contrib Mineral Petrol, 161: 845–861 Tang Y J, Chen Y J, Zhou S, Ning J, Ding Z. 2013.
    Google ScholarLocate open access versionFindings
  • J Geophys Res-Solid Earth, 118: 2333–2346 Tao R, Zhang L, Fei Y, Liu Q. 2014.
    Google ScholarFindings
  • Geochim Cosmochim Acta, 143: 253–267 Tatsumi Y, Maruyama S, Nohda S. 1990.
    Google ScholarFindings
  • Tectonophysics, 181: 299–306 Tatsumi Y, Eggins S. 1995.
    Google ScholarFindings
  • 211 Taylor S R, McLennan S M. 1985.
    Google ScholarFindings
  • 312 Taylor S R, McLennan S M. 1995.
    Google ScholarFindings
  • Rev Geophys, 33: 241–265 Tian Y, Zhao D P, Sun R M, Teng J W. 2009.
    Google ScholarLocate open access versionFindings
  • Phys Earth Planet Inter, 172: 169–182 Tonegawa T, Hirahara K, Shibutani T, Iwamori H, Kanamori H, Shiomi K. 2008.
    Google ScholarFindings
  • Earth Planet Sci Lett, 274: 346–354 Ueda K, Gerya T, Sobolev S V. 2008.
    Google ScholarFindings
  • Phys Earth Planet Inter, 171: 296– 312 van der Lee S, Regenauer-Lieb K, Yuen D A. 2008.
    Google ScholarFindings
  • Earth Planet Sci Lett, 273: 15–27 van der Meer D G, Torsvik T H, Spakman W, van Hinsbergen D J J, Amaru M L. 2012.
    Google ScholarFindings
  • Nat Geosci, 5: 215–219 van Hunen J, van den Berg A P, Vlaar N J. 2000.
    Google ScholarFindings
  • Earth Planet Sci Lett, 182: 157–169 van Hunen J, van den Berg A P, Vlaar N J. 2004.
    Google ScholarFindings
  • Phys Earth Planet Inter, 146: 179–194 van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011.
    Google ScholarLocate open access versionFindings
  • J Geophys Res, 116: B01401 von Huene R, Ranero C R, Vannucchi P. 2004.
    Google ScholarFindings
  • Geology, 32: 913–916 Wada I, Wang K L. 2009.
    Google ScholarFindings
  • Geochem Geophys Geosyst, 10: Q10009 Walter M J. 1998.
    Google ScholarFindings
  • J Petrol, 39: 29–60 Wang X, Gao S, Liu X, Yuan H, Hu Z, Zhang H, Wang X. 2006.
    Google ScholarFindings
  • Sci China Ser D-Earth Sci, 49: 904–914 Wang W, Xu W, Ji W, Yang D, Pei F. 2006.
    Google ScholarLocate open access versionFindings
  • Geol J China Univ, 12: 30−40 Wang Y, Zhao Z F, Zheng Y F, Zhang J J. 2011.
    Google ScholarFindings
  • Lithos, 125: 940–955 Wang X C, Wilde S A, Li Q L, Yang Y N. 2015.
    Google ScholarFindings
  • Nat Commun, 6: 7700 Wang Z S, Kusky T M, Capitanio F A. 2016.
    Google ScholarFindings
  • Geophys Res Lett, 43: 11567–11577 Wang X J, Chen L H, Hofmann A W, Mao F G, Liu J Q, Zhong Y, Xie L W, Yang Y H. 2017.
    Google ScholarLocate open access versionFindings
  • Earth Planet Sci Lett, 465: 16–28 Wei W, Xu J, Zhao D, Shi Y. 2012.
    Google ScholarFindings
  • J Asian Earth Sci, 60: 88–103 Wei W, Zhao D P, Xu J, Wei F, Liu G. 2015.
    Google ScholarFindings
  • J Geophys Res Solid Earth, 120: 1642– 1666 White W M, Klein E M. 2014.
    Google ScholarFindings
  • Treatise Geochem, 4: 457−496 Whittaker J M, Müller R D, Leitchenkov G, Stagg H, Sdrolias M, Gaina C, Goncharov A. 2007.
    Google ScholarFindings
  • Science, 318: 83–86 Windley B F, Maruyama S, Xiao W J. 2010.
    Google ScholarFindings
  • Am J Sci, 310: 1250–1293 Wu F Y, Lin J Q, Wilde S A, Zhang X, Yang J H. 2005a.
    Google ScholarFindings
  • Earth Planet Sci Lett, 233: 103–119 Wu F Y, Zhao G, Wilde S A, Sun D. 2005b.
    Google ScholarFindings
  • J Asian Earth Sci, 24: 523– 545 Wu F Y, Yang J H, Wilde S A, Zhang X O. 2005c.
    Google ScholarFindings
  • Chem Geol, 221: 127–156 Wu F Y, Walker R J, Yang Y H, Yuan H L, Yang J H. 2006.
    Google ScholarFindings
  • Geochim Cosmochim Acta, 70: 5013–5034 Wu F Y, Xu Y G, Gao S, Zheng J P. 2008.
    Google ScholarLocate open access versionFindings
  • Acta Petrol Sin, 24: 1145–1174 Wu F Y, Xu Y G, Zhu R X, Zhang G W. 2014.
    Google ScholarFindings
  • Sci China Earth Sci, 57: 2878–2890 Xia Q X, Zheng Y F, Zhou L G. 2008.
    Google ScholarFindings
  • Chem Geol, 247: 36–65 Xiao Y, Zhang H F, Fan W M, Ying J F, Zhang J, Zhao X M, Su B X. 2010.
    Google ScholarFindings
  • Lithos, 117: 229–246 Xu X S, O’Reilly S Y, Zhou X, Griffin W L. 1996.
    Google ScholarFindings
  • Lithos, 38: 41–62 Xu X S, O’Reilly S Y, Griffin W L, Zhou X. 2000.
    Google ScholarFindings
  • J Petrol, 41: 111–148 Xu Y G. 2001.
    Google ScholarLocate open access versionFindings
  • Phys Chem Earth (A), 26: 747−757 Xu Y G, Sun M, Yan W, Liu Y, Huang X L, Chen X M. 2002.
    Google ScholarLocate open access versionFindings
  • J Asian Earth Sci, 20: 937–954 Xu Y G, Ma J L, Huang X L, Iizuka Y, Chung S L, Wang Y B, Wu X Y. 2004a.
    Google ScholarLocate open access versionFindings
  • Int J Earth Sci (Geol Rundsch), 93: 1025–1041 Xu Y G, Chung S L, Ma J, Shi L. 2004b.
    Google ScholarFindings
  • J Geol, 112: 593–605 Xu Y G. 2006.
    Google ScholarLocate open access versionFindings
  • Earth Sci Fronti, 13: 93−104 Xu Y G, Blusztajn J, Ma J L, Suzuki K, Liu J F, Hart S R. 2008.
    Google ScholarLocate open access versionFindings
  • Lithos, 102: 25–42 Xu P F, Zhao D P. 2009.
    Google ScholarFindings
  • Geophys J Int, 177: 1279–1283 Xu Y G, Li H Y, Pang C J, He B. 2009.
    Google ScholarFindings
  • Sci Bull, 54: 3379–3396 Xu Z, Zhao Z F, Zheng Y F. 2012.
    Google ScholarFindings
  • Lithos, 146147: 202–217 Xu Y G, Zhang H H, Qiu H N, Ge W C, Wu F Y. 2012.
    Google ScholarFindings
  • Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone? Chem Geol, 328: 168–184 Xu Z, Zheng Y F, He H Y, Zhao Z F. 2014a.
    Google ScholarLocate open access versionFindings
  • J Volcanol Geotherm Res, 272: 99–110 Xu Z, Zheng Y F, Zhao Z F, Gong B. 2014b.
    Google ScholarFindings
  • Xu Y G. 2014. Recycled oceanic crust in the source of 90–40Ma basalts in North and Northeast China: Evidence, provenance and significance. Geochim Cosmochim Acta, 143: 49–67
    Google ScholarLocate open access versionFindings
  • Xu Z, Zheng Y F. 2017. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China. J Asian Earth Sci, 145: 233–259
    Google ScholarLocate open access versionFindings
  • Xu Z, Zheng Y F, Zhao Z F. 2017. The origin of Cenozoic continental basalts in east-central China: Constrained by linking Pb isotopes to other geochemical variables. Lithos, 268-271: 302–319
    Google ScholarLocate open access versionFindings
  • Yamamoto J, Nishimura K, Ishibashi H, Kagi H, Arai S, Prikhod'ko V S. 2012. Thermal structure beneath Far Eastern Russia inferred from geothermobarometric analyses of mantle xenoliths: Direct evidence for high geothermal gradient in backarc lithosphere. Tectonophysics, 554557: 74–82
    Google ScholarLocate open access versionFindings
  • Yan J, Chen J, Xie Z, Zhou T. 2003. Mantle xenoliths from Late Cretaceous basalt in eastern Shandong Province: New constraint on the timing of lithospheric thinning in eastern China. Chin Sci Bull, 48: 2139–2144
    Google ScholarLocate open access versionFindings
  • Yang W, Li S. 2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton. Lithos, 102: 88–117
    Google ScholarLocate open access versionFindings
  • Yang J H, Chung S L, Zhai M G, Zhou X H. 2004. Geochemical and Sr-NdPb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: Evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73: 145–160
    Google ScholarLocate open access versionFindings
  • Yang J H, Chung S L, Wilde S A, Wu F, Chu M F, Lo C H, Fan H R. 2005a. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chem Geol, 214: 99–125
    Google ScholarLocate open access versionFindings
  • Yang J H, Wu F Y, Chung S L, Wilde S A, Chu M F, Lo C H, Song B. 2005b. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, east China and their relationship to lithospheric thinning. Chem Geol, 222: 200–231
    Google ScholarLocate open access versionFindings
  • Yang J H, Sun J F, Chen F, Wilde S A, Wu F Y. 2007a. Sources and petrogenesis of late Triassic dolerite dikes in the Liaodong Peninsula: Implications for post-collisional lithosphere thinning of the eastern North China Craton. J Petrol, 48: 1973–1997
    Google ScholarLocate open access versionFindings
  • Yang J H, Wu F Y, Wilde S A, Liu X M. 2007b. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chem Geol, 242: 155–175
    Google ScholarLocate open access versionFindings
  • Yang J H, Sun J F, Zhang J H, Wilde S A. 2012. Petrogenesis of Late Triassic intrusive rocks in the northern Liaodong Peninsula related to decratonization of the North China Craton: Zircon U-Pb age and Hf-O isotope evidence. Lithos, 153: 108–128
    Google ScholarLocate open access versionFindings
  • Yang D B, Xu W L, Pei F P, Yang C H, Wang Q H. 2012. Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr-Nd-Pb isotopes in Mesozoic mafic igneous rocks. Lithos, 136-139: 246–260
    Google ScholarLocate open access versionFindings
  • Yang Q L, Zhao Z F, Zheng Y F. 2012a. Modification of subcontinental lithospheric mantle above continental subduction zone: Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 146-147: 164–182
    Google ScholarLocate open access versionFindings
  • Yang Q L, Zhao Z F, Zheng Y F. 2012b. Slab-mantle interaction in continental subduction channel: Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China. Lithos, 155: 442–460
    Google ScholarLocate open access versionFindings
  • Ying J F, Zhang H F, Kita N, Morishita Y, Shimoda G. 2006. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: Constraints from petrology and geochemistry of peridotitic xenoliths from Jünan, Shandong Province, China. Earth Planet Sci Lett, 244: 622–638
    Google ScholarLocate open access versionFindings
  • Ying J F, Zhou X H, Su B X, Tang Y J. 2011. Continental growth and secular evolution: Constraints from U-Pb ages and Hf isotope of detrital zircons in Proterozoic Jixian sedimentary section (1.8–0.8 Ga), North China Craton. Precambrian Res, 189: 229–238
    Google ScholarLocate open access versionFindings
  • Yu J H, O’Reilly S Y, Griffin W L, Xu X, Zhang M, Zhou X. 2003. The thermal state and composition of the lithospheric mantle beneath the Leizhou Peninsula, South China. J Volcanol Geotherm Res, 122: 165–
    Google ScholarLocate open access versionFindings
  • Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 54: 789–797 Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012a. Destruction of the North China Craton. Sci China Earth Sci, 55: 1565– 1587 Zhu R X, Yang J H, Wu F Y. 2012b. Timing of destruction of the North China Craton. Lithos, 149: 51–60 Zhu R X, Fan H R, Li J W, Meng Q R, Li S R, Zeng Q D. 2015. Decratonic gold deposits. Sci China Earth Sci, 58: 1523–1537 Zou H B, Zindler A, Xu X S, Qi Q. 2000.
    Google ScholarLocate open access versionFindings
  • Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chem Geol, 171: 33–47 Zou H, Fan Q, Yao Y. 2008. U-Th systematics of dispersed young volcanoes in NE China: Asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab. Chem Geol, 255: 134–142 (Responsibility editor: Fuyuan WU)
    Google ScholarLocate open access versionFindings
Your rating :
0

 

Tags
Comments